Tunable Optoelectronic Oscillator Based on a Polarization Modulator and a Chirped FBG

Zhenzhou Tang, Shilong Pan, Member, IEEE, Dan Zhu, Ronghui Guo, Yongjiu Zhao, Minghai Pan, De Ben, and Jianping Yao, Fellow, IEEE

Abstract—A wideband-tunable optoelectronic oscillator (OEO) is proposed and experimentally demonstrated based on a tunable microwave photonic filter (MPF) consisting of a polarization modulator, a chirped fiber Bragg grating, and a polarization beam splitter (PBS). By simply adjusting the polarization state of the signal before the PBS, the center frequency of the MPF is tuned. The proposed OEO is experimentally demonstrated. A high-purity microwave signal with a tunable frequency within 5.8–11.8 GHz is generated. The single-sideband phase noise of the generated signal is −104.56 dBc/Hz at 10-kHz offset.

Index Terms—Microwave generation, microwave photonics, optoelectronic oscillator (OEO), polarization modulation.

I. INTRODUCTION

OPTOELECTRONIC oscillators (OEO) have attracted great interests for possible applications in radars, communications, and modern instrumentation thanks to their inherent capability to generate microwave or millimeter-wave signals with ultra-low phase noise [1]. Most of the OEOs proposed in the past, however, have a small frequency tuning range due to the poor tunability of a high-Q microwave bandpass filter (BPF) in an OEO loop for mode selection [2]. Although some microwave filters, such as a Yttrium-iron-garnet (YIG) BPF, can have a tunable range in the GHz range [3], a highly stable drive current source has to be used, which is usually bulky and costly. To overcome the problem, several approaches to tune the OEO in the optical domain were reported [4]–[9]. In [6], we proposed an OEO tunable from 6.41 to 10.85 GHz based on a Fabry-Perot laser diode (LD). However, the stability of the OEO is poor since the wavelength drift of the LD will directly affect the frequency of the OEO. A joint operation of a phase modulator and a dispersive element would produce a tunable microwave photonic bandpass filter (MPF), which has been used to implement a tunable OEO [7], but the frequency tuning is also achieved by tuning the wavelength of the laser source. Recently, a frequency tunable OEO was reported by phase modulation or single-sideband modulation followed by a narrowband phase-shifted fiber Bragg grating (FBG) [8], [9], but again the frequency of the oscillation signal is sensitive to the wavelength drift of the laser source.

In this letter, we propose and demonstrate a novel tunable OEO based on a microwave photonic filter consisting of a polarization modulator (PoM) and a chirped FBG (CFBG). The CFBG serves as a dispersive element. The PoM together with a polarization beam splitter (PBS) performs simultaneously amplitude modulation and phase modulation, with the ratio between the two modulations adjusted by changing the polarization state of the optical signal between the PoM and the PBS. Since the transmission response of an amplitude-modulated signal decreases with frequency and that of a phase-modulated signal increases with frequency in a dispersive element, the change of the ratio between the two modulations would lead to a shift of the transmission response of the entire signal [10]. A tunable MPF for a coarse selection of the oscillation mode in the OEO is thus formed. In addition, the PBS is used to form dual loops. Fine selection of the oscillation mode is achieved by the Vernier effect.

II. PRINCIPLE

Fig. 1 shows the schematic of the proposed tunable OEO. The key component in the OEO is the tunable MPF formed by a PoM, a CFBG, two polarization controllers (PCs) and a PBS. When a light wave that is aligned via a PC (PC1) at an angle of 45° to one principal axis of the PoM is coupled into the PoM, two phase-modulated optical waves along the two principal axes are generated [11]

\[
\begin{bmatrix}
E_x \\
E_y
\end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix}
j J_1(\gamma) e^{-j\omega_m t} + J_0(\gamma) + j J_1(\gamma) e^{j\omega_m t} \\
j J_1(\gamma) e^{-j\omega_m t} + J_0(\gamma) - j J_1(\gamma) e^{j\omega_m t}
\end{bmatrix}
\]  

(1)

where \(\omega_m\) is the angular frequency of the optical carrier, \(\gamma\) is the modulation index, \(\omega_m\) is the angular frequency of the generated signal, \(J_n(\gamma)\) is the \(n\)th-order Bessel function of the first kind. In (1), higher-order \((\geq 2)\) terms are ignored due to a
small-signal modulation. The modulated signal is sent to the CFBG via an optical circulator, which functions as a dispersive element. The reflected signal is given by

\[
\begin{bmatrix}
E_x \\
E_y
\end{bmatrix} \propto \frac{\sqrt{2}}{2} \begin{bmatrix}
J_1(\gamma)e^{-j(\omega t - \theta_1)} + J_0(\gamma)e^{j\theta_0} + j J_1(\gamma)e^{j(\omega t + \theta_1)} \\
J_1(\gamma)e^{-j(\omega t - \theta_1)} - J_0(\gamma)e^{j\theta_0} - j J_1(\gamma)e^{j(\omega t + \theta_1)}
\end{bmatrix}
\]

(2)

where \(\theta_0 = z\beta(\omega_c)\), \(\theta_1 = z\beta(\omega_c) + \tau_0\omega_m + 1/2D_\omega\omega_m^2\), and \(\theta_{-1} = z\beta(\omega_c) - \tau_0\omega_m + 1/2D_\omega\omega_m^2\) are the dispersion-induced phase shifts to the optical carrier and the upper and lower sidebands, respectively, where \(z\) is the traveled distance, \(\beta(\omega_c)\) is the propagation constant at \(\omega_c\), \(\tau_0 = z\beta''(\omega_c)\) and \(D_\omega = z\beta''(\omega_c)\). \(E_x\) and \(E_y\) are then combined by a PBS whose principal axis is oriented at an angle of \(\alpha\) to one principal axis of the PolM, we obtain

\[
E(t) = \cos a E_x e^{j\theta_0} + \sin a E_y \\
\propto J_0(\gamma) \left( e^{j(\theta_0 + \phi)} \cos a + e^{j\theta_0} \sin a \right) \\
+ J_1(\gamma) \cos a \left( e^{j(\omega t + \phi_0 - \theta_1)} + e^{j(\omega t + \phi_0 + \theta_1)} \right) \\
- J_1(\gamma) \sin a \left( e^{j(\omega t - \phi_0 + \theta_1)} + e^{j(\omega t + \phi_0 + \theta_1)} \right)
\]

(3)

where \(\phi_0\) is the phase difference between \(E_x\) and \(E_y\) which can be adjusted by tuning the DC bias applied to the PolM. The phase signal at the output of the PBS is sent to a photodetector (PD), and let \(\phi_0 = \pi/2\), the AC term of the detected signal is given by

\[
i_{AC} \propto |E(t)|^2 = 2J_0(\gamma) J_1(\gamma) \\
\times \sin \left( 2a + \frac{1}{2}D_\omega\omega_m^2 \right) \cos \left( \omega_m(t - \tau_0) \right)
\]

(4)

As can be seen, the generated electrical signal has a coefficient given by \(\eta = \sin(2a + 1/2D_\omega\omega_m^2)\), so the power varies as a function of the angular frequency \(\omega_m\). Obviously, if \(2a + 1/2D_\omega\omega_m^2 = (2k + 1)\pi/2\), \(k = 0, \pm 1, \pm 2, \ldots\), the signal at \(\omega_m\) will have a maximum transmittance. That is to say, the frequency of the transmission peak is

\[
\omega_m = \sqrt{(2k + 1) \pi - 4a}/D_\omega (k = 0, \pm 1, \pm 2, \ldots)
\]

(5)

Since \(a\) can be tuned by PC2, the peak of the transmission response can be shifted to any desired frequency.
of 6 GHz. The zoom-in view of the 6-GHz microwave signal is shown in Fig. 3(b). The side mode suppression ratio is greater than 60 dB. The single-sideband (SSB) phase noise of the oscillating signal is also measured. As can be seen in Fig. 4, the phase noise of the 6-GHz microwave signal is $-104.56$ dBc/Hz at 10-KHz offset. The sidemodes have a maximal phase noise of $-95$ dBc/Hz, indicating that the spectral purity of the OEO is high. It should be noted that the phase noise measurement based on the electrical spectrum analyzer would be affected by the intensity noise, so the actual performance should be better than the measured cases.

The stability of the oscillating signal is also evaluated. During more than half an hour observation, no mode hopping is found. Since the OEO is operated at a laboratory environment and no mechanical, thermal and acoustic isolation or phase locking loop is used, the frequency drift of the oscillating signal is about 100 kHz.

By adjusting PC2, the frequency of the oscillating signal can be tuned in a wide range. Fig. 5 shows the electrical spectra of the generated signal over a frequency ranging from 5.8 to 11.8 GHz with a tuning step of 100 MHz. The operational frequency of the OEO is restricted by the frequency response of the electrical or electro-optical devices in the system and the dispersion parameter of the CFBG. Note that some frequencies cannot be achieved due to the uneven frequency response of the electrical or the electro-optical devices in the system. For instance, the EA used in the experiment has a small notch around 10 GHz, so we can only observe oscillation signal at a higher frequency, corresponding to the second peak of the MPF. If the gain of the OEO is flattened, the frequency tuning range covering 5.8 to 11.8 GHz would be achievable, and a constant output power would also be maintained.

**REFERENCES**


