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� Abstract
By virtue of the combined merits of optical microscopy and flow cytometry, imaging
flow cytometry is a powerful tool for rapid, high-content analysis of single cells in large
heterogeneous populations. However, its efficiency (defined by the ratio of the number
of clearly imaged cells to the total cell population) is not high (typically 50–80%), due to
out-of-focus image blurring caused by imperfect fluidic focusing of cells, a common
drawback that not only reduces the number of cell images useable for high-content anal-
ysis but also increases the probability of false events and missed rare cells. To address
this challenge and expand the efficacy of imaging flow cytometry, here, we propose and
demonstrate intelligent deblurring of out-of-focus cell images in imaging flow cytometry.
Specifically, by using our machine learning algorithms, we show an 11% increase in vari-
ance and a 95% increase in first-order gradient summation of cell images taken with an
optofluidic time-stretch microscope. Without strict hardware requirements, our intelli-
gent de-blurring method provides a promising solution to the out-of-focus blurring
problem of imaging flow cytometers and holds promise for significantly improving their
performance. © 2019 International Society for Advancement of Cytometry
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WITH the combined merits of optical microscopy and flow cytometry, imaging flow
cytometry has become an established tool for rapid, high-content analysis of single
cells in large heterogeneous populations (1–9). It has found a wide range of applica-
tions in microbiology, stem cell biology, immunology, and marine biology (3,10,11).
Imaging flow cytometry provides quantitative image data of every event, allowing for
the morphometric assessment of single cells and further advancing our understanding
of the vast heterogeneity of cells (12). The availability of image data produced by
an imaging flow cytometer is aligned with the pressing need for progressively larger
biomedical datasets for efficient and accurate data analysis to make better decisions in
biomedical research and clinical settings (13). According to recent reports (14,15),
imaging flow cytometry has been shown to be highly effective for the accurate evalua-
tion of cell death and autophagy, fluorescence in situ hybridization (FISH), the localiza-
tion and enumeration of transcription factors, the characterization of DNA damage and
repair, and the analysis of cell–cell interactions. In addition to applications for basic
research, imaging flow cytometry has also found clinical utility for applications such as
liquid biopsy and infectious disease detection (16,17). By virtue of these numerous capa-
bilities and applications, imaging flow cytometry is expected to grow in the next decade.

Unfortunately, imaging flow cytometry suffers from out-of-focus image blurring
caused by imperfect fluidic focusing of cells, resulting in an efficiency (defined by
the ratio of the number of clearly imaged cells to the total cell population) of
50–80%, meaning that 20–50% of cells in the flow are not properly imaged (3). The
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focusing problem is attributed to cell-to-cell fluctuations in
position at the moment when the flowing cell passes through
the imaging area in a capillary tube or microchannel (18). This
makes it difficult to see the detailed structure of cells, even if the
spatial resolution of the imaging flow cytometer is high, signifi-
cantly reducing the effective number of cell images for high-
content analysis and increasing the chance of false events and
missed rare cells. Several fluidic focusing techniques, such as
hydrodynamic focusing (19), inertial focusing (18), and acoustic
focusing (20), can be used to introduce external forces for con-
fining cells in a specific focal plane, but the heterogeneous nature
of cells (i.e., non-uniform cell size, shape, mass, density, stiffness)
limits the effectiveness of these techniques, making it infeasible
to reach perfect cell focusing and an efficiency of 100%. While
digital image de-blurring techniques have been demonstrated for
macroscopic images or videos by applying specific de-blurring
filters (21) or machine learning (22) to them, these methods
have not been demonstrated on microscopic images yet.

In this article, we propose and demonstrate intelligent
de-blurring of out-of-focus cell images in order to improve the
efficiency of an imaging flow cytometer. Specifically, with our
technique, we establish and optimize a two-stage machine-
learning network with a residual network (ResNet) structure and
then feed blurred cell images to the optimized machine-learning
network to de-blur them. To investigate the performance of this
method, we used an optofluidic time-stretch microscope as a
bright-field imaging flow cytometer to acquire both blurred and
unblurred images of K-562 cells (human immortalized myeloge-
nous leukemia cell line), applied intelligent de-blurring to them,
and significantly improved the visibility of the detailed structure
of the cells in the blurred cell images. Quantitatively, the variance
and the first-order gradient summation of the blurred images,
which are commonly used parameters to evaluate the quality of
images, were increased by 11% and 95%, respectively. Our intelli-
gent de-blurring method provides a promising solution to the
cellular out-of-focus blurring problem, without strict hardware
requirements for imaging flow cytometers.

METHODS

Figure 1 shows a typical imaging flow cytometry system
consisting of an optical microscope and a capillary tube or a
microchannel. The microscope performs high-resolution

imaging of cells that pass through the capillary tube or
microchannel. The incident light of the microscope is focused
on the imaging area within the capillary tube or microchannel
through an objective lens. To obtain clear images, the cells
should flow exactly in the focal plane of the objective lens. Since
the size of the capillary tube or microchannel is usually larger
than that of the cells, they flow in different planes when passing
through the imaging area, as illustrated in the inset of Figure 1.
Even if cell focusing techniques are applied, the cells still flow in
different planes inside the capillary tube or microchannel due to
their heterogeneous nature (i.e., non-uniform cell size, shape,
mass, density, stiffness). When cells deviate from the focal plane
of the objective lens, the obtained images are blurred.

To deal with this problem, our method for de-blurring
out-of-focus cell images was achieved by applying machine
learning without the need for extraordinary hardware.
Figure 2 shows the structure of the machine-learning network
that we employed for intelligent image de-blurring. Since it is
impractical to acquire both blurred and unblurred images of
the same cells to train the network, we selected unblurred
images obtained by the imaging flow cytometer and blurred
them by low-pass filtering to simulate the image-blurring
effects due to the out-of-focus problem (23). The artificially
blurred images were used as the input of the network while
the corresponding unblurred images were used as the targets
to train the network. The machine-learning network in
Figure 2 includes two stages. The first stage is composed of
several processing blocks, each of which consists of a 2D con-
volutional layer followed by a rectified linear unit (ReLU) as
the activation function (24). To allow for high-level feature
inference, the numbers of features learnt in the processing
blocks are first increased by gradually increasing the number
of output channels in each 2D convolutional layer, for exam-
ple, from 1 to M, and then decreased by gradually reducing the
number of output channels from M to 1. This way, the output
images of the first stage have the same size as the input images.
The second stage has the same structure as the first stage, but
there is a shortcut connection between the input and output.
This residual network (ResNet) configuration is helpful to
achieve good training performance and a rapid convergence
(25). The output images from the second stage are compared
with the unblurred images to calculate the errors. The loss
function is defined as the weighted superposition of the mean
square error (MSE) and the first-order gradient difference
between the output images and the unblurred images, which
considers both the similarity and sharpness of the images (24).
The errors calculated with the loss function are backpropagated
through the network while the network’s parameters are
updated using the adaptive moment estimation (ADAM)
optimization (26). Once the network is optimized and validated,
image de-blurring is performed by simply feeding the blurred
images to the network.

To investigate the performance of the intelligent image
de-blurring method, an optofluidic time-stretch microscope was
used as an imaging flow cytometer to acquire both blurred and
unblurred images of K-562 cells (a leukemia cell line). Figure 3
shows a schematic diagram of the optofluidic time-stretch

Figure 1. Schematic diagram of a typical imaging flow cytometry

system. Out-of-focus image blurring occurs due to imperfect

fluidic focusing of cells in a capillary tube or microfluidic channel.
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microscope, which is mainly composed of a broadband pulse
laser (Spectra Physics Tsunami 3941-50NS-UPG-FE and
Millennia EV 10-TG-FE, center wavelength 790 nm, band-
width 40 nm, repetition rate 75 MHz), a temporal disperser
(Nufern 630-HP, total amount of dispersion is −240 ps/nm), a
spatial disperser (a pair of diffraction gratings with a groove
density of 1,200 lines/mm), a pair of objective lenses (Olympus
LUCPlanFLN 40×, NA 0.6), a microfluidic device (home-made
hydrodynamic-focusing microchannel), a single-pixel photode-
tector (New Focus 1,580-B, bandwidth 12 GHz), a digitizer
(Tektronix DPO71604B, sampling rate 50 GS/s, bandwidth
16 GHz), and a digital signal processor. The optical pulse from
the broadband pulse laser is first sent to the dispersive fiber,
where the pulse is stretched in the time domain. Then, the
stretched pulse is spatially dispersed by the first diffraction

grating. Thus, different frequency components of the pulse are
diffracted at different angles, resulting in a 1D rainbow-like
profile. After that, this 1D rainbow pulse is focused onto the
microfluidic device by the first objective lens. Different coordi-
nates on the target are illuminated by different frequency
components of the pulse. Therefore, the spatial information of
the target is encoded in the spectrum of the pulse. Next, the
encoded pulse is collected and recombined by the second
objective lens and the second diffraction grating. Finally, the
pulse is detected and digitized by the single-pixel photodetector
and the digitizer, respectively. In this process, each pulse takes
one cross section of the target. By digitally stacking multiple
pulses, 2D images of the targets can be constructed.

Figure 4 shows typical unblurred and blurred images of
K562 cells, where the unblurred images have obviously higher

Figure 2. Structure of the machine-learning network used for intelligent image de-blurring of out-of-focus cell images. The network

includes two stages. The output images from the second stage are compared with the unblurred images to calculate errors or differences

between the unblurred and de-blurred images. The errors calculated with the loss function are backpropagated through the network while

the network’s parameters are updated using the ADAM optimization.

Figure 3. Schematic diagram of the optofluidic time-stretch microscope for demonstrating intelligent image de-blurring of out-of-focus

cell images.
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Figure 4. Unblurred and blurred images of K-562 cells captured by an optofluidic time-stretch microscope.

Figure 5. Performance of the machine-learning-based image de-blurring network. (a) Blurred images, de-blurred images and unblurred

images of four K562 cells. (b) Histograms of variance of 2,000 cell images. (c) Histogram of 2,000 cell images in gradient summation.
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clarity and higher contrast compared to the blurred ones. The
fine structures of the cells are evident in the unblurred
images, while the details of the cells can hardly be discerned
in the blurred images. In this experiment, 11,000 unblurred
images of the K-562 cells were obtained, of which 9,000
images were used to train the machine-learning network
while the remaining 2,000 images were used for validating the
trained network. Before training and validating the network,
the amplitudes of all the images were normalized to a range
of 0–1. The machine-learning network was established in a
Python (version 3.6) environment using Keras as the applica-
tion programming interface (API). The images of the training
set were first blurred by an image-blurring filter with a 5 × 5
kernel and then fed to the input of the network. In each stage
of the network, there were nine processing blocks, of which
the output numbers of channels were 1, 4, 8, 16, 32, 64,
16, 4, and 1, respectively. All the kernels used in the con-
volutional layers had 3 × 3 elements and all the bias terms
were initialized to 0. To avoid over-fitting when training the
network, early stopping was applied in the training process.

RESULTS

After training the network, its performance was tested
using the validation set composed of 2,000 unblurred and
corresponding artificially blurred image pairs. Figure 5a shows
the blurred images, de-blurred images, and unblurred images
of four K562 cells, where the de-blurred images have appar-
ently higher clarity than that of the blurred images and similar
quality as the unblurred images. To quantitatively show the

improvement of image quality, the variance and the first-order
gradient summation of the images were calculated (27,28). In
Figure 5a, the first values in the brackets below each image are
the variances of the images, whereas the second values are the
first-order gradient summations. For cell 1, after de-blurring,
the values of the two parameters increased from (0.0101, 214)
to (0.0114, 400) close to those of the unblurred image with
(0.0115, 482). Here, the increase in the variance and gradi-
ent summation indicates the image contrast is dramatically
enhanced after de-blurring. For cells 2, 3, and 4, the variance
and first-order gradient summation also notably increased after
de-blurring. Figure 5b shows histograms of the images of all
2,000 K562 cells in the variance, in which the average variance of
the blurred images, de-blurred images, and unblurred images
were found to be 0.0106, 0.0119, and 0.0121, respectively.
Figure 5c shows histograms of the images of the 2,000 K562
cells in the gradient summation, where the average values are
225, 430, and 486, for the blurred images, de-blurred images,
and unblurred images, respectively. These results quantitatively
verify that the optimized machine-learning network achieved
effective image de-blurring.

Finally, to validate the performance of our method in
practice, de-blurring of blurred images (obtained by the
optofluidic time-stretch microscope) was performed by feeding
them to the optimized machine-learning network. Figure 6a
shows the blurred images and de-blurred images of three K562
cells, where the de-blurred images have obviously higher clarity
than that of the blurred images. In the enlarged views of cer-
tain areas of each image in Figure 6a, fine cell structures that
cannot be distinguished in the blurred images became clear in

Figure 6. De-blurring performance of the blurred images captured by the optofluidic time-stretch microscope. (a) Blurred images and de-

blurred images of three K562 cells. (b) Comparison of 50 cell images in variance. (c) Comparison of 50 cell images in gradient summation.
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the de-blurred images, indicating that the image quality was
significantly improved. To statistically show the improvement,
the blurred and de-blurred images of 50 K562 cells were
compared in terms of the variance and gradient summation,
as shown in Figure 6b,c. In general, both the variance and
gradient summation increased after de-blurring by the opti-
mized machine-learning network. On average, the variance
of an image increased by 11%, while the gradient summation
increased by 95%. These results firmly show that the opti-
mized machine-learning network is capable of remarkably
improving the quality of blurred images acquired with the
optofluidic time-stretch microscope.

DISCUSSION

There are a few points to discuss regarding the proposed
image de-blurring method. First, although the method was experi-
mentally validated on the optofluidic time-stretch microscopy
platform with K562 cells, it is also applicable to imaging flow cyto-
metry based on other imaging modalities, such as bright-field
imaging with CCD/CMOS image sensors, fluorescence imaging,
and quantitative phase imaging as well as other cell types. Second,
the structure of the network (such as the number of layers, stages,
as well as the number of output channels in each layer) may be dif-
ferent in different applications. Since the images obtained by the
optofluidic time-stretch microscope are simply in grayscale and
have many similar structures, a two-stage network was sufficient
for our demonstration. For colorful or other complicated images,
more stages are preferred to achieve a high image de-blurring per-
formance. As for the parameters in each stage of the network, we
found that a larger number of layers, a larger number of output
channels, or a smaller changing step of the output channel between
adjacent layers led to a high-level feature interaction between
different images, and hence helped achieve a higher de-blurring
performance. However, this also means that the computational
complexity is increased, leading to requirements for more compu-
tational resources (e.g., time, hardware, electrical power). Thus,
there exists a trade-off between the performance and computa-
tional complexity. We believe this intelligent image de-blurring
method is a promising solution to the cellular out-of-focus
blurring problem, without strict hardware requirements, for
imaging flow cytometers.
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