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A microwave instantaneous frequency measurement system
with a photonic scanning receiver is proposed in which
deep neural network (DNN)-assisted frequency estima-
tion is used to deal with the system defects and improve the
accuracy. The system performs frequency-to-time mapping
by optical-domain frequency scanning and electrical-
domain intermediate frequency envelop detection. Thanks
to the optical frequency multiplication, the system can
measure high frequency signals in a large spectral range.
The DNN establishes an accurate mapping between the
digital samples and real frequencies, based on which high-
accuracy measurement is achieved. The measurement of
signals from 43 to 52 GHz is experimentally demonstrated.
Compared with the direct measurements, the DNN-assisted
method achieves obviously reduced average errors of about
3.2 MHz. ©2020Optical Society of America

https://doi.org/10.1364/OL.391883

Microwave instantaneous frequency measurement (IFM) is
used in many fields such as wireless communication and elec-
tric warfare [1,2]. As electric systems develop towards much
higher operation frequencies, microwave IFM with a broad
frequency measurement range is highly demanded. Due to the
bandwidth limitations, traditional IFM faces challenges to cover
a large frequency measurement range. To address this, many
photonic microwave IFM schemes have been proposed [3–6],
in which the frequency measurement range can easily cover
from the L band to Ka band (1–40 GHz). However, many of
the photonic microwave IFM systems suffer from a large mea-
surement error of around hundreds of megahertz [6], which is
far from the requirements for spectrum sensing. Until now, one
of the photonic microwave IFM methods with high accuracy
uses a stimulated Brillouin scattering effect in optical fibers, in
which the measurement error is less than 20 MHz [7]. Recently,
we have proposed an IFM scheme using a photonic scanning
receiver implemented by optical-domain frequency scanning
and electrical-domain intermediate frequency (IF) envelop
detection [8,9]. Based on this principle, microwave frequency
measurements from 28 to 37 GHz are demonstrated with a
measurement error of less than 15 MHz. In Refs. [8,9], the IFM

is integrated with a radar function, making the design of the
system restricted. In this Letter, we present a generalized imple-
mentation of this photonic-scanning-receiver-based IFM and
emphasize the factors that deteriorate the measurement accu-
racy. More importantly, a deep neural network (DNN)-assisted
method is proposed to deal with the system defects which result
in measurement errors. The DNN is a powerful machine learn-
ing algorithm capable of approximating arbitrary functions. In
recent years, a machine learning technique has been applied in
the field of optoelectronics to enhance the system performance
[10–14]. In Ref. [10], a convolutional neural network (CNN)
is successfully used to enhance the performance of the Brillouin
IFM by mapping the estimated frequency to the final result. In
this process, digital pre-processing is required to get the esti-
mated frequency before the CNN-based optimization. In this
Letter, different from [10], the DNN is used to acquire the fre-
quency of the signal under test (SUT) directly from the sampled
digital signals, which simplifies the measurement procedure and
leads to a small latency. Besides, feature extraction from the raw
data can help to achieve good performance in compensating for
the system defects.

Figure 1 shows the schematic diagram of the IFM system
and the DNN structure used for extracting the frequency. The
continuous-wave (CW) light from a laser diode (LD) is modu-
lated by a Mach–Zehnder modulator (MZM1), which is driven
by a linearly frequency modulated (LFM) signal generated by
a low-speed electrical signal generator (ESG). The LFM signal
is set to have a large power such that high-order modulation
sidebands can be generated in the obtained optical signal. After
MZM1, an erbium-doped fiber amplifier (EDFA: EDFA1) is
used to boost the optical power, and an optical dual-band filter
(ODBF) is followed to select the ±nth-order (n is a positive
integer) modulation sidebands. The obtained optical signal (at
point a) is expressed as

E1(t)∝ Jn(α)[e j2π( fc+n fLFM)t + e j2π( fc−n fLFM)t ], (1)

where Jn(·) is the nth-order Bessel function of the first kind,α is
the modulation index, fc is the frequency of the CW light, and
fLFM = f0 + kt is the frequency of the LFM signal in a single
period (0< t ≤ T) with T, f0, and k being the temporal period,
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Fig. 1. (a) Schematic diagram of the microwave IFM system and
(b) the structure of the DNN.

the initial frequency, and the chirp rate, respectively. It should
be noted that when n is an odd number, MZM1 is biased at its
minimum transmission point to suppress the optical carrier and
even-order modulation sidebands, while MZM1 is biased at
the maximum transmission point when n is an even number, to
suppress the odd-order modulation sidebands. To avoid spectral
aliasing between adjacent sidebands, n( f0 + kT)≤ (n + 2) f0
should be satisfied, requiring n ≤ 2 f0/(kT).

The optical signal after ODBF is sent to another MZM
(MZM2). The SUT is passed through an electrical bandpass
filter (EBPF) and amplified by a low noise amplifier before
being applied to drive MZM2. Here the EBPF functions as an
image reject filter. The signal after MZM2 (at point b) can be
expressed as

E2(t)∝ J0(β)Jn(α)[e j2π( fc+n fLFM)t + e j2π( fc−n fLFM)t ]

+J1(β)Jn(α)[e j2π( fc+n fLFM+ fx )t + e j2π( fc+n fLFM− fx )t ]

+J1(β)Jn(α)[e j2π( fc−n fLFM+ fx )t + e j2π( fc−n fLFM− fx )t ], (2)

where β is the modulation index and fx is the frequency of
the SUT. Here only the ±1st-order modulation sidebands are
considered. After MZM2, another EDFA (EDFA2) is used to
boost the optical power. Within the expected frequency mea-
surement range of the IFM system, the 1st-order sideband at
fc − n fLFM + fx is close to the optical carrier at fc + n fLFM,
and they are selected out by an optical bandpass filter (OBPF).
The obtained optical signal (at point c) is

E3(t)∝ J0(β)Jn(α)[e j2π( fc+n fLFM)t ]

+ J1(β)Jn(α)[e j2π( fc−n fLFM+ fx )t ]. (3)

Then the optical signal is sent to a photodetector (PD) to per-
form optical-to-electrical conversion, and the output electrical
signal is

v(t)∝ Jn
2(α)J0(β)J1(β) cos[2π(2n fLFM − fx )t]

+
1
2 Jn

2(α)[J0
2(β)+ J1

2(β)], (4)

which contains a direct-current component and a frequency
component at |2n fLFM − fx |. Following the PD, a narrow-
band IF filter is applied to select the component at fIF.
Mathematically, the spectrum of the obtained signal from is

SE ( f )∝ [δ( f )+ δ( f − |2n fLFM − fx |)]δ( f − fIF)

= δ(|2n fLFM − fx | − fIF)δ( f − fIF), (5)

in which δ( f )+ δ( f − |2n fLFM − fx |) is the spectrum of
v(t), and δ( f − fIF) is the transfer function of an ideal narrow-
band IF filter. By applying a microwave envelope detector after
the IF filter, the envelop of the signal in Eq. (5) is obtained as

e (t)= δ(|2n f0 + 2nkt − fx | − fIF)

=

{
1 t = fx+ fIF−2n f0

2nk or fx− fIF−2n f0
2nk

0 else
. (6)

Based on Eq. (6), fx can be estimated by

fx = 20c 2n f0 + 2nktx − fIF; or 2n f0 + 2nktx + fIF, (7)

where tx is the time when e (t) 6= 0. This way, the frequency
to be measured is mapped to the time position. Through the
digital signal sampled by an analog-to-digital converter (ADC),
the frequency of the SUT can be estimated. According to
Eq. (7), the frequency to be measured should be located in
[2n f0 − fIF, 2n f0 − fIF + 2nkT] or [2n f0 + fIF, 2n f0 +

fIF + 2nkT]. To avoid overlapping between the two spec-
tral ranges, 2nkT ≤ 2 fIF should be satisfied. Meanwhile, to
eliminate the measurement ambiguity, the image reject filter
(EBPF) should have a specific passband within [2n f0 − fIF,

2n f0 − fIF + 2nkT] or [2n f0 + fIF, 2n f0 + fIF + 2nkT].
The maximum frequency measurement range of this method
is 2nkT, which is 2n times of the bandwidth of the input LFM
signal. Therefore, the proposed system not only can make the
most of current ESGs with high precision and flexibility, but
also can considerably expand the operation frequency of current
electrical frequency scanning receivers.

In obtaining Eq. (6), the IF filter is assumed to have an ideal
response while, in practice, it has a certain bandwidth, and
an input single-tone frequency is mapped to a short pulse in a
time domain. The pulse width is inversely proportional to the
bandwidth of the IF filter [15]. Therefore, the bandwidth of
the IF filter should be properly chosen to achieve both a high
measurement accuracy and a good measurement resolution
[8]. Typically, the full width at half-maximum of the gener-
ated pulses is on the level of nanoseconds or even picoseconds.
Insufficient sampling rate and precision of the ADC will cause
measurement errors. Although the influence of a low sampling
rate can be alleviated by appropriate interpolation techniques,
the system also suffers from other defects which cannot be easily
compensated for. Specifically, these system defects include
the nonlinearity during electrical-to-optical and optical-to-
electrical conversions, the spontaneous emission noises of the
laser and optical amplifiers, the finite out-of-band suppression
and edge roll-off of the optical filters, and the unideal wideband
frequency responses of the electronic or optoelectronic devices,
etc. All these factors would result in measurement errors. To deal
with these problems, we propose to use a DNN to extract the
frequency information.
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Figure 1(b) shows the structure of the DNN we employed,
which consists of one input layer, multiple hidden layers, and
one output layer. The digital samples in one frequency mea-
surement period are applied as the input, and the output is the
estimated frequency of the SUT. The input and output layers are
fully connected layers with linear activation functions, and all
the hidden layers use the log-sigmoid function as the nonlinear
activation function for each neural [16]. The DNN is trained
using the digital samples as the input and the corresponding
real frequency value as the target. When training the DNN,
the network parameters are optimized by minimizing the loss
function, which is the mean square error between the output
of the DNN and the real frequency value. To avoid overfitting,
the Bayesian regularization algorithm is applied [17] during the
training process. Once the DNN is optimized, it can be used
to estimate the frequency of the SUT. Because the DNN can
establish an accurate mapping between the digital waveforms
and the instantaneous frequencies, the overall influence of all the
system defects can be compensated for.

A proof-of-concept experiment is carried out to investi-
gate the performance of the proposed IFM method. In the
experiment, the light generated by an LD (TeraXion Inc.) has
a wavelength of 1550.12 nm. The LFM signal generated by an
ESG (Tektronix AWG70001A) has a bandwidth of 1.5 GHz
(5.5–7 GHz) and a repetition rate of 100 kHz. Both of the
MZMs (Fujitsu FTM7938EZ) have a bandwidth of∼25 GHz.
MZM1 is biased at the minimum transmission point. An
ODBF realized by a Waveshaper (Finisar Inc.) is used to select
the±3rd-order modulation sidebands (n = 3). MZM2 is biased
at the quadrature point. The SUT is generated by a microwave
signal generator (Agilent, E8257D). Since the image frequency
interference is not considered, the EBPF is not used in the
experiment. The PD has a bandwidth of 10 GHz, and the IF
filter is centered at 10 GHz with a bandwidth of 15 MHz. The
optical spectra at different points are monitored by an optical
spectrum analyzer with a resolution of 0.02 nm. The electrical
signal after the envelop detector is sampled and recorded by a
real-time oscilloscope (Agilent, DSO-X 92504A). According
to the system parameters, the frequency measurement range
is 9 GHz, which is six times that of the bandwidth of the LFM
signal. In the experiment, frequency measurements of the SUT
from 43 to 52 GHz with a step of 200 MHz are demonstrated.

First, as an example to show the measurement procedure,
the frequency of the SUT is set to 46 GHz. The optical spectra
of the signals after MZM1 and after the ODBF are shown in
Fig. 2(a), in which the ±3rd-order modulation sidebands are
successfully selected with the undesired components well sup-
pressed. Figure 2(b) shows the spectra of the signals after MZM2
and after the OBPF. It is found that the signal spectrum after
the OBPF agrees well with the expected spectrum at point c in
Fig. 1(a). Figure 3 shows the waveform of the envelope signal
within a single measurement period of 10 µs, which is captured
by the oscilloscope with a sampling rate of 50 MSa/s. As can
be seen, a short pulse appears at the time position of 3.32 µs.
According to Eq. (7), the frequency of the SUT is estimated to
be 45.988 GHz with a measurement error of 12 MHz. Then the
frequency of the SUT is tuned from 43 to 52 GHz with a step
of 200 MHz. Each frequency is measured for five times, and the
average errors at different frequencies are shown in Fig. 4(a). In
Fig. 4(a), the measurement errors are kept within 10.8 MHz,

Fig. 2. (a) Optical spectra of the signals after MZM1 and after the
ODBF, and (b) the optical spectra of the signals after MZM2 and after
the OBPF.

Fig. 3. Waveform of the sampled digital signal when the frequency
of the SUT is 46 GHz (sampling rate: 50 MSa/s).

Fig. 4. (a) Average errors by direct measurement, (b) loss curves
for training and testing the DNN, and (c) average errors with
DNN-assisted frequency estimation.

and the average error considering all the frequencies is calculated
to be 6.2 MHz.
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Next, DNN-assisted frequency estimation is performed. The
data used for training and testing the network are experimentally
generated by 500 times measurement at each frequency from
43 to 52 GHz with a step of 200 MHz. For each measurement
at different frequencies, the recorded digital waveform in one
period and the corresponding real frequency compose one set of
data. The DNN is configured to have three hidden layers, and
the number of neurons in each hidden layer is set to 500, 50, and
5, respectively. For each frequency, 90 percent of the data are
randomly selected to train the network, and the rest are used to
test the trained DNN. When training the DNN, the learning
rate is set to 0.05, and the epochs are 10000. The training proc-
ess takes about 30 min using a computer with an Intel i9-9900k
CPU (16-core) and an NVIDIA Geforce-RTX-2080Ti GPU.
The loss curves for training and testing the DNN are shown in
Fig. 4(b), where both the training loss and the testing loss con-
verge to 10−6. Then we use the same digital samples as those in
Fig. 4(a) to evaluate the performance of the DNN-assisted fre-
quency estimation. It should be noted that these digital signals
are not used for training or testing the DNN. Herein, the latency
for a single measurement is about ∼80 µs, which includes a
single frequency sweeping period, and the time used for running
the DNN. Figure 4(c) shows the absolute measurement errors
at different frequencies for the DNN-assisted method. As can
be seen, the maximum error is 6.15 MHz, and the mean error
considering all the frequencies is 3.29 MHz, both of which are
smaller than the result in Fig. 4(a). Therefore, the DNN-assisted
frequency estimation achieves much better accuracy.

Finally, the influence of sampling rate of the ADC on the
measurement accuracy is investigated. Figure 5 shows the aver-
age errors in direct measurement as used for obtaining the result
in Fig. 4(a) and the average errors in DNN-assisted measure-
ments, when the sampling rates of the ADC are 25, 30, 40, and
50 MSa/s, respectively. At different sampling rates, the DNN
is retrained, and it has the same structure except for the input
layer, of which the size is adjusted according to the number of
sampling points in a single measurement period. In Fig. 5, when
the sampling rate decreases, the average error increases from
6.2 to 12 MHz for the direct measurement method, whereas
the average errors of the DNN-assisted measurement are kept
around 3.2 MHz. Thus, the DNN-assisted method is applicable
to improve the measurement accuracy in variable sampling
rates. Besides, by using the DNN-assisted method, the average
errors are reduced by 47%, 60%, 69%, and 73%, as the sam-
pling rate decreases. Thus, the advantage of the DNN-assisted
method is more prominent for a lower sampling rate. This
property indicates the potential of the proposed method for
relaxing the hardware requirement. As a comparison, we test the
frequency estimation using different interpolation techniques.
Figure 5 also shows the average errors when the frequency
estimation is done by performing spline interpolation to the
sampled digital signals. Here the spline interpolation is chosen.
because it achieves slightly better accuracy compared to other
interpolation techniques. In Fig. 5, the measurement accuracy
by using spline interpolation is still related to the sampling rate,
i.e., the error changes from 4.2 to 8.7 MHz as the sampling rate
decrease. Although the interpolation method achieves better
accuracy compared with the direct measurement method, it
still lags behind the DNN-assisted method. This result further
confirms that the DNN-assisted method can compensate for all

Fig. 5. Average errors in direct measurement, spline-interpolation-
based measurement, and DNN-assisted measurement when the ADC
has different sampling rates.

the system defects to achieve a higher accuracy, especially for the
system with a low sampling rate.

In conclusion, we have demonstrated a DNN-assisted IFM
system with a photonic scanning receiver. The system has the
capability to measure signals at high frequency and in a large
spectral range. The use of DNN for extracting the frequency
can obviously enhance the measurement accuracy. The results
verify the advantages of the system, which is a good solution to
wideband and accurate IFM in wireless communication and
electric warfare systems.
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