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Abstract—Threats and security are critical issues in a multi-
RADAR environment, which severely affect the performance met-
rics of a RADAR system, such as range resolution, false detection,
and image quality. In a multi-RADAR environment, the issues
of jamming, spoofing, and interferences should be considered for
practical implementation. In this paper, we experimentally demon-
strate a photonically generated frequency hopped linear frequency
modulated (Ph-FHLFM) signal using injection locking in a DFB
laser. For a proof of concept, we develop Ph-FHLFM with an
eight-step and four-step hopping, each step having a bandwidth
of 2 GHz and 1 GHz, respectively, and a total bandwidth of 8 GHz.
The generated Ph-FHLFM signal detects two objects separated by
10, 5, and 2.5 cm with a maximum error of 3 mm. Further, for
the proof of concept of the interference agility of the Ph-FHLFM
signal, target objects are detected in the presence of an interferer,
which is a conventional linear frequency modulated radar with
the same/different bandwidths and chirps. Unlike in conventional
LFM, the Ph-FHLFM signal overcomes the false detection and
maintains a similar resolution in both scenarios, with and without
an interferer.

Index Terms—Frequency hopping, interference, multi-radar
environment, optical injection, semiconductor lasers.

I. INTRODUCTION

PHOTONICS radio detection and ranging (Ph-RADAR) is
one of the most studied fields in microwave photonics,

which is mainly committed to improving the resolution of target
detection and recognition; high-resolution imaging; monitoring,
and electronic warfare (EW) operations [1]–[3]. Great efforts
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have been made to improve radar functions using different
techniques for radar applications in various fields, such as
imaging, weather monitoring, defense, and autonomous vehicle
[4], [5]. Photonics RADAR has become a suitable solution due
to its inherent advantages, such as wide bandwidth, low loss,
wavelength division multiplexing, immunity to electromagnetic
interference, and an all-weather system [6], [7]. However, with
an increasing number of applications of photonics RADAR,
interference, spoofing, and jamming have become critical issues
to be considered as they affect the overall performance of the
RADAR, especially detection capability, range resolution, and
response time of detection and imaging [8]–[11].

Among different kinds of Ph-RADAR based on the trans-
mitting waveform, linear frequency modulation (LFM) based
RADAR is widely used. LFM signal provides good pulse com-
pression capability, inherent anti-electronic attack capability,
and a relatively simple structure that offers high distance res-
olution and a wide detection range [12]–[15]. However, due to
the simple waveform, LFM signals are prone to attacks from
other modern electronic technology-based RADARs [16]–[18].
For example, an attacker can use similar hardware to the victim’s
radar to monitor the original radar signal and generate a similar
signal, which acts as a spoofing [8]. Besides spoofing, interfer-
ences from other RADARs (mutual or non-mutual) and attacks
from the intruders reduce the signal-to-noise ratio (SNR), re-
sulting in a poor range resolution and poor detection capabilities
and hence the imaging resolution of the LFM RADAR decreases
[19]. As a result, radars that use LFM as transmission signals
cannot cope with interference and deception in a multi-radar
environment [20], [21]. Therefore, a new transmission signal is
needed to solve this problem.

One of the possible new transmission signals is a frequency
hopped LFM signal, which inherits the high-resolution detection
and divides the total time interval into several sub-intervals of
LFM signals. Owing to the nature of the frequency hopping
sequences and the hopping steps that can be changed, the signals
are not easily captured by intentional intrusion or unintentional
interference by the intruders/interferers, which significantly im-
proves the reliability of radar detection. Few researchers have
theoretically proposed a technique to overcome the interference
in the electronics domain but have not demonstrated a complete
system to mitigate the interferences and intrusions [22]–[24].
Therefore, in this paper, we propose a photonically generated
frequency hopped LFM (Ph-FHLFM) signal followed by de-
tecting target objects in the presence of interferers. The basic
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Fig. 1. Block diagram illustrating the photonically generated frequency
hopped LFM signal. ML: master laser; AWG: arbitrary wave generator; IM:
intensity modulator; SL: slave laser; PD: photodiode.

principle of the Ph-FHLFM signal generation is to inject a single
light beam with changing intensity obtained through an arbitrary
wave generator (AWG) into a distributed feedback (DFB) laser
operating in a period one (P1) oscillation state [25], [26]. In this
proposed scheme, rather than generating a complete chirp signal
from the start frequency of the LFM signal to the stop frequency,
it generates LFM signals with different start-stop frequencies
in its subintervals. However, while doing it, attention should
be taken to confirm that no overlapping and frequency gaps
between generated LFM signals occur within a total period.
This paper develops a Ph-FHLFM signal with four-step and
eight-step frequency hopping within a total bandwidth of 8
GHz for a proof-of-concept demonstration. Further, a frequency
hopped LFM signal with a four-step frequency hopping with
a 2GHz bandwidth of each subinterval, totaling 8 GHz band-
width (LFM1:8-10GHz, LFM2:14-16GHz, LFM3:12-14GHz,
and LFM4:10-12GHz), is used to detect two target objects
separated with a distance of 10 cm, 5 cm, and 2.5 cm in the
absence and presence of interferences. In the experiment, we
use the widely used LFM signal with the same/different BW and
chirp to that of Ph-FHLFM as an interference signal. The results
verify that the proposed Ph-FHLFM signal overcomes false
detection and poor SNR and provides a similar range resolution
even in the presence of interferers and intruders. Hence, the
proposed scheme has a wide application for radars operating in
a multi-RADAR environment such as defense, automobiles, and
industries to mitigate security and safety threats.

II. OPERATING PRINCIPLE

The basic operating principle of the proposed photonically
generated frequency hopped LFM signal is the abrupt redshift of
the emission mode of the DFB laser with an abrupt change in the
power of the injected beam. Fig. 1 shows the basic block diagram
illustrating the operating principle of the proposed Ph-FHLFM.
In Fig. 1, the power of the master laser (ML) is modulated by
the injection strength controller unit, which is comprised of the
AWG and the intensity modulator, before injecting it into the
slave laser (SL), which is the DFB laser. Based on the waveform
of the AWG, the power of the ML is varied, and accordingly,
the emission mode of the DFB laser is redshifted. Upon optical
beating of the redshifted mode of the DFB laser and the injected
beam through the photodiode (PD), which are the output of the
DFB laser after the injection of ML into SL, the RF signal with

Fig. 2. Illustration of (a) Redshift in a DFB laser, (b) Generation of FHLFM
signal.

varying frequencies can be observed. The wavelength detuning
determines the starting frequency of the frequency varying RF
signal, whereas the maximum amplitude of the AWG signal
that modulates the power of the ML determines the maximum
frequency shift.

Fig. 2 illustrates the basic operating principle using the
schematic spectrum diagram. In Fig. 2(a)-(i), the blue line in-
dicates the output emission wavelength of a DFB laser, λs0

, without any injected beam, whereas the red line indicates
the wavelength of the injected beam, ML, λm. Injecting ML
with the proper power and wavelength detuning, the redshift
phenomena on the emission mode of the DFB laser from λs0

to λs1 is observed as shown in Fig. 2(a)-(ii). On continuous
change in the injected beam power from P1 to P2, the emission
mode of the DFB laser shifts from λs1 to λs2 accordingly, as
shown in Fig. 2(a)-(iii), where the arrow indicates the shifting
of power and wavelength. On optical beating between the ML
and the redshifted emission mode of SL in a PD, RF signal with
varying frequency, from f1 to f2, can be observed as shown in
Fig. 2(a)-(iv). Instead of changing the amplitude of the AWG
signal linearly, the amplitude of AWG can be changed abruptly
within a specific time interval. Fig. 2(b)-(i) illustrates several
abrupt changes in the power within a time interval rather than
changing linearly throughout the time interval. Implementing
the abrupt amplitude change of the AWG signal, the modulation
in the power of the ML is obtained, and as a result, the output
frequency changes abruptly on optical beating, as shown in
Fig. 2(b)-(ii). The number of hopping and the sequence of
FHLFM signals are dependent on the number and sequences
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Fig. 3. Experiment setup for detecting the objects using proposed Ph-FHLFM signal with and without interferers.

of abrupt changes in input power, whereas the time interval
for linear variation of the RF signal is dependent on the time
interval of linear change in the power. In Fig. 2(b)-(i), an abrupt
change occurs after equal sub-time intervals, and as a result, a
linear frequency modulating signal can be generated between
sub-time intervals generating the FHLFM signal as illustrated
in Fig. 2(b)-(ii).

III. EXPERIMENTAL SETUP AND RESULTS

The experimental setup for the proposed Ph-FHLFM signal
generation and its implementation for detecting objects in the
absence and presence of interference is shown in Fig. 3. The
basic operating principle of the proposed scheme is the redshift
in the SL upon injecting a beam with varying optical power.
The slave laser used in the experiment is a DFB laser (Actech
LD15DM) and is biased with a biasing current of 30 mA and an
operating temperature of 25 °C. The DFB laser has an emission
wavelength of 1542.04 nm with these biasing conditions. The
tunable laser, Agilent N7714A, which can tune the wavelength
from 1520 nm to 1600 nm and the power from 5.5 dBm to 16.0
dBm, is used as the ML to inject the beam into the DFB laser.
The wavelength of ML is varied depending on the requirement in
analyzing redshift in the emission of a DFB laser with different
wavelength detuning. For the generation of LFM, Ph-FHLFM,
and target object detecting experiments, the ML is set at the
wavelength of 1541.99 nm. As a result, the Ph-FHLFM with a
starting frequency of 8.0 GHz is obtained on the optical beating
of the injected beam and the emission mode of the slave laser
in a photoelectrical detector (PD). The PD (u2t XPDV2120RA)
with a 3-dB bandwidth of 40 GHz is used in the experiment. The
polarization controller in the experiment is used to maintain the
TE polarization required for injection locking phenomena. The
attenuator is used to reduce the power of the ML for analyzing its
effect on redshift. The intensity controller, which is the central
unit, is used to control the power of the injected beam and
consists of an arbitrary wave generator (AWG, 120 MHz, Agilent
85110A) and a Mach-Zehnder modulator (Lucent 2623NA) with
a maximum modulation rate of 10 Gb/s. Based upon the AWG

waveform, the power of ML is modulated by the MZM and is
injected into the SL. Hence, a redshift in the emission frequency
of SL is observed. With an abrupt change of the AWG waveform,
an abrupt redshift is observed. Hence, upon optical beating
between abrupt redshifted emission frequency and the injected
beam, the Ph-FHLFM is generated.

For a proof of concept demonstration of the interference
handling capability of the generated Ph-FHLFM signal, an LFM
signal with the same/different BWs and chirps to that of FHLFM
is used as an interferer in the experiment. Two target objects with
separation distances, ΔL, of 10, 5, and 2.5 cm, are detected with
and without interference at the L = 3.55 m, as shown in Fig. 3.
This experiment consists mainly of three parts: (a) analysis of
the frequency shifting of emission mode of the SL upon a change
in optical power of the injected beam for different wavelength
detuning, (b) generation of Ph-FHLFM signal, and (c) detection
of target objects in the absence and presence of the interference
using the proposed Ph-FHLFM.

A. Analysis of Redshift in the Emission Mode of a DFB Laser

In this section, we analyze the redshift of the emission wave-
length of the DFB laser with a change in the input injected power
for different wavelength detuning. The redshift in the emission
wavelength of the slave laser with a change in the intensity of
the injected beam is the primary technique for obtaining the
LFM signal at the output. In the analysis, we set the emission
mode of the DFB laser as constant at the wavelength of 1542.04
nm, and the wavelength of ML is varied to obtain different
wavelength detunings. The wavelength detuning determines the
starting frequency of the output RF signal. At the same time, the
total redshift of the emission mode determines the bandwidth
obtained through the change in the injected optical power. We
inject the ML into the SL without the AWG and the modulator
to observe the shift in the emission wavelength of the SL. The
power of the input injected beam is varied by using an optical
attenuator. Fig. 4 shows the effect of varying the intensity of the
injected beam. At first, we set the wavelength detuning, Δλ, to
0.09 nm and then varied the power of the injected beam from
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Fig. 4. Effect of the change in the optical power of the injected beam at the
output of the DFB laser (a) Optical spectrum at the output of DFB (b) Frequency
variation for different wavelength detuning.

Fig. 5. Input and output of the waveform LFM generator (a) AWG signal used
to modulate the injected beam, ML (b) Temporal waveform of the generated
LFM signal, and (c) Frequency versus time waveform of the generated LFM
signal.

-16.75 dBm to -15.50 dBm in the step of 0.25 dBm. The redshift
in emission wavelength of the DFB laser with a change in optical
power is illustrated in Fig. 4(a). On optical beating in PD, the
change in RF frequency is observed, as shown in Fig. 4(b). In
Fig. 4(b), the change in the output frequency for Δλ = 0.15nm
is also presented. We can see from Fig. 4(b) that with a change
in the wavelength detuning, the starting frequency is changed. It
should be noted that the shift in the output RF frequency, which
is due to the redshift in the emission frequency of the DFB laser,
is slightly nonlinear with the linear change in the power of the
injected beam. The nonlinear change is due to the nonlinear
dynamics of the SL upon injection of an external beam. Hence,
instead of a sawtooth signal, a sawtooth-like AWG signal, as
illustrated in Fig. 5(a), is required to obtain a linearly varying
RF signal at the output. Fig. 5(b) and (c) show the temporal
waveform and the instantaneous frequency-time diagram of the
generated LFM signal, respectively when the AWG signal shown
in Fig. 5(a) is applied to the modulator. The total bandwidth of
8 GHz (from 8 GHz to 16 GHz) LFM signal is observed in the
oscilloscope after signal processing.

Fig. 6. (a) The AWG signal for random hopped LFM signal (b) Optical
spectrum.

B. Generation of Frequency Hopped LFM Signal

The redshift analysis of the emission mode of SL in Sec-
tion III(A) is used for determining the relation between the
amplitude of the electric AWG signal and the frequency shifting
of the RF signal at the output. Using the relationship between
the amplitude of AWG and the frequency of the RF signal, the
output frequency can be hopped by an abrupt change in the
amplitude of AWG. This section demonstrates the generation of
a Ph-FHLFM signal using the injection of an external beam
into the DFB laser, as shown in Fig. 3. The external beam
has an abrupt intensity change which is made possible by the
variation of the AWG signal. In this experimental setup for
generating Ph-FHLFM, the biasing conditions of the DFB laser
are kept the same, and the ML is set at the wavelength of
1541.99 nm. The AWG waveform is changed in this section
to obtain the FHLFM signal. At first, the total time interval
of the AWG signal is divided into four subintervals so that a
four-step hopping can be obtained at the output. Then, instead
of generating a continuously increasing amplitude of the AWG
signal, the amplitude of the AWG waveform is abruptly changed
between the subintervals. Since the AWG amplitude is abruptly
changed between the subintervals, the output frequency of the
RF signal also varies abruptly. The change in RF frequency with
the change in amplitude of the AWG signal is discussed in the
previous section. To confirm no overlap and gaps in the generated
RF signal, we ensure no overlap and gaps in the start and stop
amplitudes of AWG between the subintervals.

In the experiment, we set the total and subinterval bandwidth
of the RF output as 8 GHz (8 to 16 GHz) and 2GHz for four-step
hopping Ph-FHLFM, respectively. The total bandwidth of Ph-
FHLFM is determined by the total redshift of emission frequency
of the DFB laser, which is due to the amplitude varying AWG
signal within the interval. In Fig. 6(a), the abrupt change in the
amplitude of the AWG signal is observed at the subintervals of
0.25µs. Also, there is no amplitude overlap and gaps between the
subintervals (-1.5 to -1.18, 0 to 1.2, -0.71 to 0, and -1.18 to -0.71
V). The corresponding optical spectrum at the output of DFB is
shown in Fig. 6(b). On optical beating of the output of the DFB
laser in a PD, the Ph-FHLFM signal can be observed, as shown
in Fig. 7. Fig. 7(a) shows the instantaneous temporal waveform
of Ph-FHLFM, where the total period and subinterval periods
are matched with that of the AWG signal. Fig. 7(b) shows the
frequency-time diagram of the generated PH-FHLFM signal,
which consists of four LFM signals (LFM1:8.0–10.0 GHz,
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Fig. 7. Generated four-step FHLFM signal (a) the instantaneous waveform
(b) the corresponding frequency-time diagram.

Fig. 8. Generated eight-step FHLFM signal (a) Applied AWG signal (b) the
instantaneous waveform (c) Corresponding frequency-time diagram.

LFM2:14.0–16.0 GHz, LFM3:12.0–14.0 GHz, and LFM4:10.0–
12.0 GHz) which are hopped corresponding to the AWG signal
applied. Each LFM in the subinterval has a bandwidth of 2 GHz,
totaling a bandwidth of 8 GHz. The hopping sequence of the
Ph-FHLFM can be modified by controlling the abrupt change in
AWG signal between the respective subinterval.

Further, to demonstrate the reconfigurability of the number
of hopping steps in the Ph-FHLFM signal using the proposed
method, the AWG signal is modified with eight abrupt amplitude
changes within the total time interval of 1µs, as illustrated
in Fig. 8(a). Hence, eight-step frequency hopping is obtained.
The instantaneous waveform and frequency-time diagram of the
corresponding Ph-FHLFM are illustrated in Fig. 8(b) and (c),
respectively. As we can see from Fig. 8, the generated signal
has the same total bandwidth of 8 GHz (from 8.0 – 16.0 GHz)
because the minimum and maximum amplitude of the AWG
signal within a full-time interval, T of 1µs, is the same, from -1.5
V to 1.2 V, to that of four-step frequency hopping. Also, all the
LFM signals in subintervals have an equal bandwidth of 1GHz.
The only difference is the number of hopping and the order
of frequency hopping of the Ph-FHLFM signal. The number
of hopping depends on the total number of subintervals, and the
hopping sequence depends on the sequence of the abrupt change
in the amplitude of the AWG signal between the subintervals.

Fig. 9. The measured results with Ph-FHLFM without interference: actual
separation distance of two target distance difference (a) 10 cm (b) 5 cm (c) 2.5
cm.

C. Detection of Target Objects With and Without Interference
Using Proposed Ph-FHLFM

As a proof-of-concept demonstration of the interference-agile
capability of the Ph-FHLFM, the generated Ph-FHLFM signal
is used to detect two objects separated by different distances
in the absence and presence of interference. At first, two ob-
jects separated with ΔL of 10, 5, and 2.5 cm are detected
using the proposed Ph-FHLFM without interference and then
with interference. For the experiment, Target 1 is placed at the
distance, L, 3.55 m, from the RADAR antenna, as shown in
Fig. 3. For the measurement and detection of target objects with
different separation distances, Target 2 is moved, putting Target
1 stationary. We used the Ph-FHLFM signal with four-step
hopping for the detection of target objects. In order to measure
the distance between the two objects, the generated Ph-FHLFM
is divided into two paths using an electrical power divider.
One path is sent to the LNA (low noise amplifier) and then
transmitted by a transmitting antenna, and the other path is
used as the reference signal. The echo signal received by the
receiving antenna is amplified by the LNA and observed in the
oscilloscope. Finally, the separation distance of the two objects
is calculated using a digital processing algorithm that calculates
the delay of the received signal and then changes the result
to the distance information. Fig. 9 shows the cross-correlation
of the transmitted and the received echo signal. The peaks in
the cross-correlation represent the number of objects within the
range of interest, whereas the separation of two peaks shows
the separation distance, ΔL. Fig. 9(a), (b), and (c) show the
cross-correlation functions when the target objects are separated
by 10, 5, and 2.5 cm, with an error of 0.1, 0.1, and 0.3 cm,
respectively.

Next, we detected the target objects in the presence of in-
terference. A conventional LFM signal with the same/different
bandwidth and chirp is used as an interferer, as shown in Fig. 10.
At first, the interference signal with the same bandwidth and
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Fig. 10. The interference signal of (a) Same total BW and chirp rate, 8 GHz,
8 GHz/µs (b) Different total BW and chirp, 4 GHz, 4 GHz/µs.

Fig. 11. The measured results with LFM radar in the presence of interference
signal, same BW and chirp,8 GHz and 8 GHz/µs: actual separation distance of
two targets are (a) 10 cm (b) 5 cm (c) 2.5 cm.

chirp of 8 GHz and 8 GHz/µs, respectively, as that of Ph-FHLFM
is used for the interference signal as shown in Fig. 10(a).
Fig. 10(b) shows the interference signal with different bandwidth
and chirp of 4 GHz and 4GHz/µs, respectively, from that of
Ph-FHLFM. The interference signal with the same bandwidth
and chirp, which acts as the worst interference scenario and
provides false detection [8], is used first; and then followed by
the interference with different bandwidth and different chirp.
In both interference scenarios, the interferer is placed in the
direction of the receiving antenna. Before detecting the target
objects with a Ph-FHLFM signal, we use LFM-based radar to
detect the objects in the presence of an interferer.

Fig. 11 shows the cross-correlation of the transmitted con-
ventional LFM radar signal and received signals with two tar-
get objects separated by 10 cm, 5 cm, and 2.5 cm when the
interference signal is of the same bandwidth and chirp as
that of the transmitted signal. Due to the interferer, the cross-
correlation, which gives the range of objects, shows multiple
peaks (more than two), unlike in Fig. 9. The multiple peaks
in Fig. 11 show that multiple objects are present in the area
of interest, which is false. We observed that even though only
two target objects are present in the detection area, the number
of peaks observed is different for different separation distances
between the objects. This change in the number of peaks is due

Fig. 12. The measured results with LFM radar in the presence of interference
signal with different BW and chirp, 4 GHz and 4 GHz/µs: actual separation
distance of two targets are (a) 10 cm (b) 5 cm (c) 2.5 cm.

Fig. 13. The measured results with Ph-FHLFM in the presence of interference
signal, same total BW and chirp, 8 GHz and 8 GHz/µs: actual separation distance
of two targets are (a) 10 cm (b) 5 cm (c) 2.5 cm.

to a change in received interference signals because of different
separation distances between the targets. Next, an interference
signal, as illustrated in Fig. 10(b), with different bandwidth and
chirp, is used. We observed that the noise floor increases even
though few peaks are observed, as shown in Fig. 12, compared
to those with the same bandwidth and the chirp. Fig. 11 and
12 shows that LFM RADAR cannot mitigate interference while
detecting the target objects in an interference environment. To
overcome it, we use our proposed scheme of Ph-FHLFM instead
of the conventional LFM RADAR.

Finally, we demonstrate the detection capability of our pro-
posed Ph-FHLFM in the presence of interference as a proof
of concept. For this purpose, we used the same interferers, as
shown in Fig. 10, that are used to detect target objects by LFM
RADAR. Figs. 13 and 14 show the cross-correlation function
in the presence of the interference with the same total BW and
chirp (8 GHz, 8 GHz/µs) and different total BW and chirp (4
GHz, 4 GHz/µs), respectively, using our proposed Ph-FHLFM.
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Fig. 14. The measured results with PH-FHLFM in the presence of interference
signal, different total BW and chirp, 4 GHz and 4 GHz/µs, environment: actual
separation distance of two targets are (a) 10 cm (b) 5 cm (c) 2.5 cm.

There are no significant changes in cross-correlation for object
detection with both types of interference signals and are similar
to that of Fig. 9, without any interference. The cross-correlation
functions presented in Figs. 13 and 14 verify that the proposed
scheme can mitigate the interferer, unlike in the conventional
LFM, where false detection and an increase in noise floor are
observed. Using our proposed Ph-FHLFM, the difference be-
tween the actual value and measured value for two target objects
with the separation distances of 10 cm, 5 cm, and 2.5 cm in the
presence of the interference signals, Fig. 10(a) and (b), are 0.3
cm, 0.2 cm, and 0.1cm for Fig. 10(a); and 0.2 cm, 0.2 cm, and 0.1
cm for Fig. 10(b), respectively. More importantly, the detection
of objects with Ph-FHLFM is not affected by the interference
signal, which demonstrates the anti-interference capability of
the proposed Ph-FHLFM.

IV. CONCLUSION

In this paper, we experimentally demonstrated a photonically
generated frequency hopped linear frequency modulated signal
using the injection of an external beam in a DFB laser. The total
time interval is divided into several equal subintervals. An abrupt
amplitude-changed AWG signal is used in each subinterval
rather than applying the almost linear waveform from AWG for
a whole time interval period to generate the Ph-FHLFM signal.
Using the techniques of abrupt redshift through the modification
of the AWG waveform, the Ph-FHLFM signal with the total
bandwidth of 8 GHz and the hopping step of eight and four are
demonstrated. The number of hopping steps of the Ph-FHLFM
depends on the number of abrupt changes in the amplitude of
the AWG signal, whereas the total bandwidth depends on the
total redshift of the emission frequency of the DFB laser. The
generated Ph-FHLFM signal has a start frequency of 8 GHz
and a stop frequency of 16 GHz. The starting frequency can be
changed by changing the wavelength detuning. The generated
Ph-FHLFM signal with the four-step hopping (LFM1: 8.0 – 10.0
GHz, LFM2: 14.0 – 16.0 GHz, LFM3: 12.0 – 14.0 GHz, and

LFM4: 10.0 – 12.0 GHz) is used for detecting objects with
various separation distances in the absence and presence of
the interferers. We also verify that dividing the total bandwidth
into sub-interval bandwidth with an abrupt change between the
subintervals does not affect the detection range resolution of
the RADAR. The range resolution is not changed because the
total bandwidth of the Ph-FHLFM signal is the same within
the total period, and no overlap and gaps of frequencies occur.
An LFM radar with the bandwidth and chirp of 8 GHz and 8
GHz/µs and 4 GHz and 4 GHz/µs are used as an interferer. As
a proof of concept demonstration, we verified that the proposed
Ph-FHLFM mitigates both interference scenarios with a maxi-
mum range resolution error of 3 mm, unlike in the conventional
LFM RADAR, where false detection and an increase in noise
floor are observed. With the analysis done in this work on the
detection capability of Ph-FHLFM, the proposed Ph-FHLFM
can be used in various applications such as autonomous vehicles
and defense RADARs applications to reduce safety and security
threats.
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