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Abstract: Photonics-based high-resolution 3D radar imaging is demonstrated in which a
convolutional neural network (CNN)-assisted back projection (BP) imaging method is applied to
implement fast and noise-resistant image construction. The proposed system uses a 2D radar array
with each element being a broadband radar transceiver realized by microwave photonic frequency
multiplication and mixing. The CNN-assisted BP image construction is achieved by mapping
low-resolution images to high-resolution images with a pre-trained 3D CNN, which greatly
reduces the computational complexity and enhances the imaging speed compared with basic BP
image construction. Besides, using noise-free or low-noise ground truth images for training the
CNN, the CNN-assisted BP imaging method can suppress the noises, which helps to generate
high-quality images. In the experiment, 3D radar imaging with a K-band photonics-based radar
having a bandwidth of 8 GHz is performed, in which the imaging speed is enhanced by a factor
of ∼55.3 using the CNN-assisted BP imaging method. By comparing the peak signal to noise
ratios (PSNR) of the generated images, the noise-resistant capability of the CNN-assisted BP
method is soundly verified.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Radar imaging has wide applications in remote sensing, target recognition, and geological
survey, etc. [1,2]. Currently, the operation bandwidth of traditional radars is constrained by
the electric devices and subsystems, which results in a limited range resolution in decimeter
level. Microwave photonic technology has great potential in breaking through the frequency and
bandwidth limitations of traditional radars, and it has been applied in radar applications [3–7].
Previously reported photonics-based radars have achieved a range resolution at the centimeter
level, which makes it possible for high-resolution 2D and 3D radar imaging [8–14]. Nevertheless,
the improvement of range resolution brings great challenges to construct high-quality images
with commonly used radar imaging algorithms, such as the Range-Doppler (RD) algorithm [15].
This is caused by the fact that the target migration may cover multiple range resolution units,
making it difficult to implement accurate motion and phase compensation. The obtained radar
images may suffer from defocusing and distortions [16]. Using time-domain back projection
(BP) algorithm can avoid the problem of migration by accurate coherent accumulation [12].
However, the imaging speed is rather low because the BP algorithm requires quite a lot of
computations, and this problem is aggravated for broadband high-resolution imaging as the
number of image pixels is increased. To improve the imaging speed, a few fast BP algorithms have
been proposed, but most of these methods would lower the image quality since the fast imaging
is realized by undersampling in azimuth direction. Therefore, a method for implementing fast
and high-precision imaging with photonics-based broadband radar is highly desired.
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In recent years, deep learning has emerged as a promising technique for signal recovery and
image processing. Convolution neural network (CNN), an important model of the deep learning
technique, has unique advantages in feature extraction and identification. It has been successfully
applied to implement speckle elimination [17,18], target classification [19,20], and recognition
[21] in the field of radar imaging. In [22], we have proposed a CNN-assisted BP method using
a pre-trained CNN to complete the mapping between low-resolution and high-resolution radar
images. With this method, the imaging speed can be remarkably improved while keeping the
high-precision imaging capability originated from BP imaging method. Another advantage of
this method is that it is noise resistant if noise-free images are used as the ground truth images
when training the CNN. Therefore, this method is a promising solution to implementing fast and
high-quality imaging for photonics-based broadband radars. In [22], the fast and noise-resistant
imaging capability of the CNN-assisted BP method is verified through simulations of a 2D radar
imaging. In this paper, we extend the CNN-assisted BP method from 2D imaging to 3D imaging,
and experimentally investigate its performance with a photonics-based 3D radar imaging system,
which is particularly important to validate the effectiveness of this method in real applications. In
addition, a potential problem with the previous CNN-assisted BP method is pointed out, i.e., the
noise-resistant property may suppress the weak-scattering targets and thus reduce the reliability
of the obtained images. A solution to this problem is proposed and investigated.

2. Principle

Figure 1 shows the schematic diagram of the photonics-based 3D radar imaging system, in which
a 2D uniform rectangular array consisting of W×H elements is adopted. Each element of the 2D
array is a broadband radar transceiver constructed based on photonic frequency multiplication
and frequency mixing [4]. To save the cost, the 2D uniform rectangular array can also be
constructed by the synthetic aperture radar technique [23,24], which requires only one radar
transceiver. To establish the radar transceiver, a continuous wave intermediate frequency (IF)
band linearly frequency modulated (LFM) signal generated by a voltage-controlled oscillator
(VCO) is fed to an electrical 90° hybrid coupler. The obtained two signals are sent to the two
RF ports of a dual-parallel Mach–Zehnder modulator (DPMZM) to modulate the continuous
wave light source generated by a laser diode (LD). By properly setting the bias voltages, the
DPMZM works at the frequency quadrupling mode [11], i.e., only the ±2nd-order modulation
sidebands are generated. An optical coupler (OC) is used to equally split the optical signal into
two branches. In the upper branch, the optical signal is sent to a photodetector (PD1) to complete
optical-to-electrical conversion. The generated LFM signal has a bandwidth that is four times the
original IF-LFM signal. It is launched to the free space through a transmit antenna after amplified
by an electrical amplifier (EA1). The radar echoes collected by the receive antenna are properly
amplified by another amplifier (EA2) and applied to an MZM to modulate the optical signal from
the lower branch of the OC. The obtained optical signal is amplified by an erbium-doped optical
fiber amplifier (EDFA) and sent to another PD (PD2) to implement photonic frequency mixing,
which completes the de-chirp processing [11]. An electrical low-pass filter (ELPF) is followed to
select the desired de-chirped signal by removing the high-frequency interferences. Then, the
de-chirped signal is sampled by an analog-to-digital converter (ADC) before sent to a digital
signal processing (DSP) unit.

To illustrate the principle of basic BP imaging method, we assume the 3D image to be
constructed contains M, N, and L pixels along x, y, and z directions, respectively. Here, y-axis is
the range direction along the radar line of sight (LOS), x-axis is the azimuth direction, and z-axis
is the elevation direction, as shown in Fig. 1. The 1D range profiles corresponding to different
elements of the 2D array are acquired by performing fast Fourier transformation (FFT) to the
de-chirped digital signals [11]. By back projecting the range amplitudes to the M×N×L pixels of
the imaging area through interpolation, W×H coarse images are obtained, as denoted by Rwh
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Fig. 1. Photonics-based 3D radar imaging schematic diagram.

(tmnl), where tmnl is the round-trip time delay between the w,h-th element of the 2D array (w=1, 2,
. . . , W; h=1, 2, . . . , H) and the image pixel at the coordinate of (xm, yn, zl) [22]. Then, all these
coarse images are coherently accumulated to get the final 3D image. The amplitude of the image
pixel at (xm, yn, zl) can be expressed as:

A(xm, yn, zl) =

W∑︂
w=1

H∑︂
h=1

Rwh(tmnl) exp j
(︃
4πtmnlc

2λ

)︃
(1)

where c is the speed of light and λ is the carrier wavelength. In this process, the amount of
calculations, which is proportional to W×H×M×N×L, is usually quite large and the imaging
speed is rather low. Since the photonics-based broadband radar enables high-resolution imaging,
the resultant increase of imaging pixels will undoubtedly aggravate the computation complexity
and further lower the imaging speed. To address this, we propose a CNN-assisted BP imaging
method, of which the basic idea is to reduce the number of back projection pixels, and then
construct a high-resolution image using a pre-trained CNN.

Figure 2 shows the processing flow of the CNN-assisted BP imaging method. Firstly, the
imaging area is divided into (M/α) × (N/β) × (L/γ) blocks (α, β, γ, M/α, N/β, and L/γ are
positive integers) to get a low-resolution 3D image containing (M/α) × (N/β) × (L/γ) pixels using
basic BP algorithm. Here, the low-resolution image may not have high accuracy, but it should
cover all the imaging areas. Then, a pseudo-high-resolution 3D image with M×N×L pixels is
obtained by mapping each pixel of the low-resolution image to a random pixel within the block
covering the same area, as shown in Fig. 2. The other pixels within the same block are simply set
to zero. After normalization processing, the pseudo-high-resolution 3D image is sent to a CNN,
which outputs the desired high-resolution 3D image having M×N×L pixels. To avoid destroying
the integrity of the input data, a 3D CNN structure is adopted, as shown in Fig. 2. The 3D CNN
consists of one 3D input layer, multiple middle layers, and one output layer. The 3D input layer
imports the pseudo-high-resolution 3D images into the network. Each middle layer contains a
3D convolution layer for feature extraction, a batch normalization (BN) layer for speeding up
the training process and reducing the sensitivity to network initialization, and a rectified linear
unit (ReLU) as the nonlinear activation function [17]. The output layer is composed of a 3D
convolution layer and a regression layer, which outputs the data of the last middle layer in the
same form as the ground truth image and calculates the loss, thus helping to stabilize and speed
up the training of the network. All the 3D convolution layers in the 3D CNN use the cubic filter
having the same size to extract features from local neighborhoods on 3D feature maps in the
previous layer.
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Fig. 2. Processing flow of the CNN-assisted BP imaging method.

The 3D CNN is trained using datasets generated by simulations. To make sure it is applicable
in different scenarios, the pseudo-high-resolution 3D images are generated considering different
conditions in which the number of targets, the target locations, and signal-to-noise ratio (SNR) of
the radar echoes are randomly chosen within a specific range. The ground truth images used
for training the CNN are the high-resolution 3D images obtained by basic BP method. When
training the 3D CNN, the mean square error (MSE) between the output image and the ground
truth image is used as the loss function:

Loss(Θ) =
1

MNL

M∑︂
m

N∑︂
n

L∑︂
l

∥︁∥︁∥︁∥︁YΘm,n,l − Xground
m,n,l

∥︁∥︁∥︁∥︁2

2
(2)

where YΘm,n,l and Xground
m,n,l denote the m, n, l-th pixel of the network’s output image and the

corresponding ground truth, respectively. The output image YΘ is given by YΘ = F(Xinput;Θ),
where F is the 3D CNN’s operator on the input image Xinput and Θ is the 3D CNN’s parameter
space (e.g., kernels, weights, and biases). To suppress the gradients explosion due to a small
learning rate and improve the training speed as much as possible, adjustable gradient clipping is
adopted in the training process. Once the 3D CNN is trained, it can be used to construct 3D images
based on actual experimental data. In this process, the complexity of constructing a low-resolution
3D image is reduced by a factor of α×β×γ compared with that when directly generating the
high-resolution 3D image. By controlling the complexity of the 3D CNN structure, running the
CNN would take much less time than building the image with BP algorithm. Therefore, the
imaging speed of the CNN-assisted BP method will be enhanced with a factor close to α×β×γ,
compared with basic BP method. When the ground truth images used for training the 3D CNN
are generated without loading noises to the radar echoes, the CNN-assisted BP imaging method
can suppress the noises after image construction. This noise-resistant property has been verified
through simulations of 2D image construction in our previous work [22].

3. Experiments

An experiment is carried out to investigate the performance of the photonics-based 3D radar
imaging system. The radar transceiver is built based on the setup in Fig. 1. The CW light is
generated by an LD (TeraXion Inc.) with a wavelength of 1550.12 nm. A VCO (INNO-9205)
is used to generate an IF-LFM signal, of which the bandwidth is 2 GHz (4.5-6.5 GHz) and the
pulse width is 100µs with a repetition rate of 5 kHz. The DPMZM (Fujitsu FTM7962EP) has
a 3-dB bandwidth of about 28 GHz. The output signal from the DPMZM is divided into two
branches by an OC. In the upper branch, a PD (PD1, u2t XPDV2120RA, bandwidth: 40 GHz)
is used to implement optical-to-electrical conversion, generating a frequency quadrupled LFM
signal covering a frequency range from 18 GHz to 26 GHz. The LFM signal is amplified by an
EA (EA1, SHF 806E, 26 dB gain) and fed to the transmit antenna. The radar echoes collected by
the receive antenna are properly amplified by another amplifier (EA2, SHF 806E) and applied to
an MZM (EOSAPCE Inc.) to modulate the optical signal in the lower branch of the OC. The
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output signal amplified by an EDFA (Amonics Ltd.) is sent to another PD (PD2, CONQUER
Inc., bandwidth: 10 GHz) to complete photonic frequency de-chirping. An ELPF with a 3-dB
bandwidth of 95 MHz is followed to remove the high-frequency interference. The output signal
is sampled by an ADC with a sampling rate of 100 MSa/s. The operation bandwidth of the
established radar is 8 GHz (18-26 GHz), which enables a high range resolution of 1.875 cm.
In our experiment, a synthetic aperture radar architecture is adopted, in which a single radar
transceiver is moved along a two-dimensional sliding track to form a 2D uniform rectangular
array. The equivalent 2D array is composed of 50×50 elements (W=H=50), and it covers an
area of 2 m × 2 m. The imaging area is apart from the 2D array by 4 meters.

The dataset used for training the 3D CNN is numerically generated based on a mathematical
model that has the same parameters as the experimental scenario. When generating the low-
resolution images, the target is a series of point reflectors, of which the total number is randomly
chosen from 1 to 25 and the positions are randomly assigned within the imaging area. Besides,
additive white Gaussian noise (AWGN) is loaded to the radar echoes, imitating a radar receiver
with a random SNR between -55 dB and -14 dB. The corresponding ground truth high-resolution
3D images are generated by basic BP imaging algorithm without considering the noise. In this
way, 500 pairs of low-resolution 3D images and high-resolution ground truths are generated as a
dataset. The 3D CNN is set to have five middle layers, in which the five convolution layers have
2, 16, 16, 16, and 4 filters, respectively, and all the filters have a size of 5×5×5. These parameters
are optimized to achieve a good tradeoff between a fast imaging speed and a high imaging quality.
If a CNN having a more complex structure is applied, the imaging quality may be improved, but
the imaging speeding will be lowered because of the increased computational complexity. The
3D CNN is trained using Stochastic Gradient Descent Momentum (SGDM) optimization, and the
learning rate is reduced by 10 times every 10 periods with the initial value being 0.01. Besides,
the L2 norm of the gradient is used to enable gradient clipping with a threshold of 0.01. All
the numerically generated images are used to train the 3D CNN, and the loss curve during the
training process is shown in Fig. 3. As can be seen, the loss is well converged to an acceptable
level after 50 epochs of training. Here, training the CNN takes 21.5 hours using a commercial
computer (CPU: i9-9900K 16-core, GPU: GTX 2080Ti, RAM: DDR4 64GB). With the trained
3D CNN, radar image construction with experimentally collected data can be implemented.

Fig. 3. The loss performance of the 3D CNN during training.

To verify the feasibility of the CNN-assisted BP method, three reflective balls (diameter: 3.76
cm) are used as the targets, of which the positions have different values in range, azimuth, and
elevation directions, as shown in Fig. 1. The desired 3D image includes 160×160×160 pixels
(M=N=L=160), that covers a cubic space of 0.28m×0.28m×0.28m. When using the basic BP
imaging method based on Eq. (1), the 3D view of the obtained image is shown in Fig. 4(a), which
is the scatterplot of the points with their amplitudes larger than 0.1% of the peak amplitude.
Figure 4(b) shows the 2D view obtained by maximum value projection to one of the coordinate
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planes. When using the CNN-assisted BP method, the low-resolution image obtained by basic BP
method has 40×40×40 pixels, which means the computation complexity is reduced by a factor of
64 (α=β=γ=4). Here, separating the image area into 40×40×40 pixels can make sure there are
at least two samples within a radar resolution cell, obeying the spatial sampling theorem [25].

Fig. 4. (a) The high-resolution 3D image and (b) its 2D view directly obtained by the
basic BP algorithm, (c) the high-resolution 3D image and (b) its 2D view obtained by the
CNN-assisted BP algorithm.

After generating a pseudo-high-resolution image and sending it to the CNN, a 3D image with
160×160×160 pixels is obtained with its 3D and 2D views shown in Fig. 4(c) and Fig. 4(d),
respectively. The results in Fig. 4 indicate that high-resolution image construction can be well
implemented with the proposed CNN-assisted BP method. In addition, the targets of the image
generated by CNN-assisted BP method are more focused than those generated by basic BP
method. This is attributed to the noise-resistant property of the CNN-assisted BP imaging
method, which suppresses the noises interferences circled by the red dotted line in Fig. 4(b). The
imaging time required for obtaining Fig. 4(a) and Fig. 4(c) with the same computer as that used
for training the CNN is measured to be 407.005 s and 7.360 s, respectively, with a reduction ratio
of ∼55.3. Therefore, the CNN-assisted BP method achieves greatly enhanced imaging speeding
compared with basic BP method.

In the previous demonstration, the scattering intensities of the three balls in Fig. 1 are nearly
the same in all directions. To imitate real scenes in which the scattering points usually have
different reflection coefficients, a complex U-shape target composed of a few corner reflectors
(size: 2 cm × 2 cm × 2 cm) is applied, as shown in Fig. 5(a). The reflectors are artificially set
to have different orientations, such that the radar echoes reflected from different reflectors have
different amplitudes. The desired 3D image still has 160×160×160 pixels, and the low-resolution
image used in the CNN-assisted BP imaging has 40×40×40 pixels. In this case, the improvement
of imaging speed by using the CNN-assisted BP method is nearly the same as the previous
demonstration. Figure 5(b) and (c) show the imaging results obtained by the basic BP method
and the CNN-assisted BP method, respectively. Here, due to the unideal observation direction
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for some of the reflectors, they are missing in the obtained 3D images. While, by comparing the
two 3D images, it is found that the CNN-assisted BP algorithm can still perform fast imaging
with high precision, and the strong scatter points are more focused because of the noise-resistant
property. Considering that the collected radar echoes in the experiment have very low noise, to
intensively investigate the noise-resistant capability of the proposed method, different levels of
AWGN are artificially added to the de-chirped digital signals. We define the relative SNR, which
is the power ratio between the de-chirped signal and the loaded AWGN, to indicate how much
noise is loaded. When the relative SNR is 30dB, the 3D imaging results obtained by the basic BP
imaging are shown in Fig. 5(d), in which the background noises severely deteriorate the image
quality. When using the CNN-assisted BP imaging method, the obtained image is clear with the
background noise well suppressed, as shown in Fig. 5(e).

Fig. 5. (a) The Photographs of the complex target setup, the 3D image obtained by (b) basic
BP imaging and (c) CNN-assisted BP imaging with the original experimental data, the 3D
image obtained by (d) basic BP imaging and (e) CNN-assisted BP imaging when the relative
SNR of echo is 30 dB.
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In obtaining the images of Figs. 5(c) and (e), the CNN used for image construction is trained
with noise-free ground truth images, which makes the proposed algorithm have very strong
noise-suppress capability. A potential problem is that, as the background noises are suppressed,
the targets with weak scattering amplitudes are also suppressed. This problem becomes more
serious when the radar echoes suffer from more noises. When the relative SNR is decreased to
25 dB, the basic BP image is shown in Fig. 6(a), in which the target cannot be clearly observed
due to the serious noise. The image obtained by CNN-assisted BP method is shown in Fig. 6(b).
As can be seen, the target can be observed in Fig. 6(b) and most of the background noises are
suppressed, the amplitudes corresponding to the weak scattering points circled by the red dotted
line in Fig. 6(b) are also suppressed, which reduces the reliability of the obtained images. To
solve this problem, we propose to use low-noise ground truth images to train the CNN, instead
of using noise-free ground truth images. Specifically, the ground truth images are obtained
using numerically generated radar echoes that have 30-dB higher SNR than the echoes used for
constructing the low-resolution images. With this modification, when the relative SNR is 25 dB,
the 3D image obtained by the modified CNN-assisted BP method is shown in Fig. 6(c). In this
case, although the background noise is slightly stronger than that in Fig. 6(b), the weak scattering
points can be well observed, which is helpful to improve the reliability of the obtained images.
In the modified method, when training the CNN, the SNR difference between the radar echoes
should be chosen considering both the noise level of the experimentally collected radar echoes
and the desired radar imaging quality. In our experiment, the SNR difference of 30 dB achieves
a good tradeoff between a strong noise suppression capability and a high fidelity of the weak
scatters. If the radar detection environment is changed, a re-optimization of the SNR difference
is preferred.

Fig. 6. The 3D image obtained by (a) basic BP imaging, the 3D image obtained by (b)
original CNN and (c) modified-CNN assisted BP when the relative SNR of echo is 25 dB.

To quantitatively evaluate the noise-resistant capability of the proposed method, the peak signal
to noise ratios (PSNR) of the 3D images generated by the basic BP method and the modified
CNN-assisted BP method are compared when the radar suffers from different levels of noises.
The PSNR is a commonly used evaluation index in radar denoising and despeckling research
[26,27], which is defined by

PSNR = 10log10

(︃
1

MSE

)︃
= 10log10

⎛⎜⎜⎜⎜⎝
MNL

M∑︁
m

N∑︁
n

L∑︁
l

∥︁∥︁∥︁∥︁Xtest
m,n,l − Xref

m,n,l

∥︁∥︁∥︁∥︁2

2

⎞⎟⎟⎟⎟⎠
(3)

in which Xtest and Xref are the image under test and the reference image, respectively. When
calculating the PSNR, the 3D image obtained by basic BP method without loading extra AWGN,
i.e., the image in Fig. 5(b), is used as the reference. Since the target contrast in each image
is usually concerned in radar applications, the image under test and the reference image are
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normalized individually according to their maximum amplitude. Figure 7 shows the measured
PSNR when the relative SNR decreases from 36 dB to 4 dB with a step of 0.5 dB. In Fig. 7,
the PSNR values of the images generated by the modified CNN-assisted BP method are always
higher than those of images obtained by basic BP method, and the maximum difference between
the two curves reaches 12 dB when the relative SNR is 23.5 dB. When the relative SNR is lower
than 20 dB, due to the serious noises, the PSNR values of the two methods tend to be flat with
slight fluctuations, while the modified-CNN assisted BP method has an advantage of about 5
dB. This result can soundly verify the good noise-resolution capability of the proposed method,
especially in strong noise scenarios.

4. Conclusion

We have proposed and demonstrated a CNN-assisted microwave photonic broadband 3D radar
imaging method aiming to realize fast and noise-resistant 3D radar imaging. The proposed
method uses CNN to construct high-resolution images based on low-resolution images, which
greatly enhances the imaging speed compared with basic BP imaging. Besides, using noise-free
or low-noise ground truth images to train the CNN, the proposed method can suppress the noises,
which helps to get high-quality images. The performance of the proposed method is investigated
through experiments with a photonics-based broadband radar, and the results verify its feasibility
and advantage.

Fig. 7. PSNR of the 3D images obtained by basic BP imaging and modified-CNN-assisted
BP imaging, when the relative SNR decreases from 36 dB to 4 dB.
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