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ABSTRACT We propose and demonstrate a convolutional neural network (CNN)-based fast back pro-
jection (FBP) imaging method, which has noise-resistant capability in strong noise conditions. In this
method, the desired high-resolution image is constructed from a low-resolution back projection (BP) image
using a pre-trained CNN. Compared to the high-resolution imaging with basic BP algorithm, the proposed
CNN-based FBP imaging has significantly reduced complexity, enabling a fast imaging speed. Meanwhile,
by training the CNN using noiseless images as the desired output, the CNN-based FBP imaging is
noise-resistant, which helps to obtain high-quality images in strong noise scenarios. Performance of this
CNN-based FBP imaging method is investigated and compared with basic BP imaging and other methods
through extensive numerical simulations. The results show that, using a CNN with optimized structure,
the proposedmethod can greatly improve the imaging speed.Meanwhile, high-quality images with improved
peak signal to noise ratios (PSNRs) are obtained in low signal-to-noise-ratio (SNR) conditions. This
CNN-based FBP imaging method is expected to find applications where high-quality and fast radar imaging
is required.

INDEX TERMS Synthetic aperture radar, back projection algorithm, fast back projection imaging, convo-
lutional neural network, high-resolution imaging.

I. INTRODUCTION
High-resolution radar imaging has wide applications in auto-
matic driving, security checks, environmental monitoring,
and so on [1], [2]. Synthetic aperture radar (SAR) imaging
is a powerful technique to obtain high-resolution images
taking advantage of the relative motion between radar and
target [3], [4]. Among the various SAR imaging algorithms,
the time-domain back projection (BP) imaging algorithm is
regarded as a general imaging approach that can be adapted to
arbitrary aperture geometries [5]–[8]. Besides, the BP imag-
ing algorithm is simple to implement without complicated
nonlinear motion compensation, which is usually required in
frequency-domain SAR imaging algorithms [9]. The main
drawback of BP imaging algorithm is that it requires a
large number of computations [10], which limits the imaging
speed and makes it difficult to achieve fast or real-time radar
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imaging. To address this problem, a number of fast back
projection (FBP) imaging algorithms have been proposed,
which apply sparse sampling in the along-track direction to
enhance the imaging speed [11]–[13]. In these FBP imaging
algorithms, the total synthetic aperture is usually split into
multiple sub-apertures, and each sub-aperture generates a
coarse image. Then, all the coarse images are recursively
fused by image-domain interpolations to get the final image.
These FBP algorithms have been proved feasible to improve
the imaging speed, but the image quality may be deteriorated
compared with that by using the basic BP imaging algo-
rithm, especially when the radar suffers from strong noises.
Although the influence of noise on FBP imaging has been
considered in previous works [14], [15], effective solutions
to improving the image quality are rarely reported. Consider-
ing that the radar usually works in low signal-to-noise-ratio
(SNR) environments, it is highly demanded to find effective
approaches to simultaneously increase the BP imaging speed
and generate noise-resistant high-quality images.
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FIGURE 1. Illustrations of (a) basic BP imaging and (b) the proposed CNN-based FBP imaging.

In recent years, deep learning technology, especially the
convolutional neural network (CNN) has emerged as a pow-
erful tool for image construction and processing [16]–[18].
Previously, the CNN has been successfully applied to
implement speckle elimination [19], [20], target classifica-
tion [21], [22], and recognition [23] in the field of SAR imag-
ing. Besides, CNN-based fast computed tomography (CT)
image construction has also been proposed to address the
sparse-view problem [24]. In this paper, we propose and
demonstrate a CNN-based FBP radar imaging method, which
is noise-resistant when the radar is operated in low SNR
conditions. In this method, the desired high-resolution image
is constructed from a low-resolution BP image through a
pre-trained CNN. Compared with the basic BP imaging
algorithm, the CNN-based FBP imaging method has signif-
icantly reduced complexity, which ensures a fast imaging
speed. In addition, the CNN is trained considering differ-
ent radar imaging scenes to establish a mapping between
low-resolution BP images and noiseless high-resolution BP
images. This way, the obtained high-resolution images by
the CNN-based FBP method have a good quality with less
noise interference, especially when the radar works in strong
noise conditions. Performance of the proposed CNN-based
FBP imaging method is investigated through simulations.
Its imaging speed and quality are compared with basic BP
imaging and other methods.

II. PRINCIPLE
Fig. 1(a) is a schematic illustration of the basic BP imaging
method, in which the radar aperture moves along a linear
track to form a synthetic aperture with L equally spaced
apertures. For each aperture, pulse compression is first imple-
mented to obtain the 1D pulse compression image. After
interpolating the 1D pulse compression image to make it
coincide with the M × N pixels of the imaging area, the
1D coarse image of the l-th aperture (l = 1, 2, . . . , L) is
obtained, as denoted by Rl (tij), where tij is the round-trip
time delay between the l-th aperture and the image pixel at
the coordinate of (xi, yj). Then, the coarse images of all the
apertures are coherently accumulated to get the amplitude of
the image pixel at (xi, yj), which is expressed as

A(xi, yi) =
L∑

m=1

Rm(tij)exp
(
j
4π tijc
2λ

)
(1)

where c is the speed of light and λ is the carrier wave-
length. By calculating the amplitudes at different pixels,
the final image can be obtained. In the basic BP algorithm,
the number of required operations is proportional to
L × M × N . It is usually time-consuming to construct a
high-resolution image because of the high computational
complexity. To address this, we propose the CNN-based FBP
imaging method that uses a pre-trained CNN to construct
the desired high-resolution images from low-resolution BP
images.

Fig. 1(b) shows the principle of the CNN-based FBP imag-
ing method. Assuming the desired high-resolution image
contains M × N pixels, a low-resolution image with
(M /α) × (N /β) pixels (α, β, M /α, and N /β are positive
integers) is first generated by the basic BP imaging method.
Based on this low-resolution image, a pseudo-high-resolution
image with M × N pixels covering the same imaging area is
derived as the input of the CNN. The pseudo-high-resolution
image is divided into (M /α) × (N /β) blocks with each block
containing α×β sub-pixels. The detailed approach for getting
the pseudo-high-resolution image is as follows. A random
sub-pixel in a given block is assigned with the same value as
the low-resolution image pixel corresponding to this block,
as shown in Fig. 1(b). The other sub-pixels in this block are
simply set to zero. Before the previous processing, all the
pixels are normalized to the range between 0 and 1 for each
image. The obtained pseudo-high-resolution image is sent to
the pre-trained CNN that outputs the desired high-resolution
image. The CNN consists of one input layer, multiple middle
layers, and one output layer. The input layer operates on the
pseudo-high-resolution image. Each middle layer contains
a convolution layer and a rectified linear unit (ReLU) as
the nonlinear activation function [19]. The output layer is
composed of a convolution layer and a regression layer. Here,
the regression layer predicts the responses of the trained
network and thus helps to stabilize the training for regres-
sion [25]. All the convolution layers in the CNN have the
same number of filters and the same filter size. Zero-padding
is adopted to make sure the pixels at the image boundary
can be correctly predicted. The dataset used for training the
CNN is numerically generated. To make sure the CNN-based
FBP imaging method is applicable in different scenarios,
the pseudo-high-resolution images are generated considering
different conditions in which the number of targets, the target
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locations, and SNR of the radar echoes are randomly chosen
within a specific range. The ground truth images used for
training the CNN is the high-resolution images obtained by
basic BP method without noise. When training the CNN,
the mean square error (MSE) between the output image and
the ground truth image is used as the loss function:

Loss(2) =
1
MN

M∑
i

N∑
j

∥∥∥Y2i,j − Xgroundi,j

∥∥∥2
2

(2)

where Y2i,j and X
ground
i,j denote the i, j-th pixel of the network’s

output image and the corresponding ground truth, respec-
tively. The output image Y2 is given by Y2 = F

(
X input ;2

)
,

where F is the CNN’s operator on the input image X input

and 2 is the CNN’s parameter space (e.g., kernels, weights,
and biases). To suppress the gradients explosion due to a
small learning rate and improve the training speed as much
as possible, adjustable gradient clipping is adopted in the
training process. Once the CNN is trained, it can be used to
generate high-resolution images by feeding new test data into
the network.

In the proposed method, a simple structure of the
CNN is preferred such that most of the computations of
the CNN-based FBP imaging are used to construct the
low-resolution BP image. Because the complexity of con-
structing the low-resolution BP image is reduced by a factor
of αβ compared to that required to construct a high-resolution
BP image, a significantly improved imaging speed can be
achieved by the CNN-based FBP imaging method. To further
enhance the imaging speed, the CNN-based FBP method
can be applied together with other FBP algorithms, i.e., the
imaging speed of the CNN-based FBP method can be fur-
ther increased if the low-resolution image is generated by
an existed FBP method. In addition to the improvement of
imaging speed, another advantage of the proposed method is
that it is noise-resistant, because the CNN is trained using
noiseless images as the desired outputs. This property makes
it feasible to get high-quality images, especially in strong
noise scenarios.

III. SIMULATION AND RESULTS
To investigate the performance of the proposed CNN-based
FBP method, a large number of numerical simulations are
carried out. In the simulation, the radar transmits linearly
frequency modulated signals with a bandwidth of 4 GHz.
The conceptual picture of the simulation scenario is shown
in Fig. 2, where the linear synthetic aperture is composed
of 100 apertures (L = 100) with a total length of 2.5 m.
The imaging area is 50 m away from the radar and has a
size of 2 m × 2 m. The desired high-resolution image has
256 × 256 pixels, and the low-resolution BP image
used for generating the pseudo-high-resolution image has
64 × 64 pixels. The target is a series of point reflectors,
of which the total number is randomly chosen from 1 to
300 and the positions are randomly assigned within the imag-
ing area. When generating a pseudo-high-resolution image,

FIGURE 2. The conceptual picture of the simulation scenario.

additive white Gaussian noise (AWGN) is loaded to the radar
echo, imitating a radar receiver with a random SNR between
−35 dB and −5 dB. The corresponding ground truth images
are generated by basic BP imaging algorithm without consid-
ering the noise. The dataset used for training and validating
the CNN is composed of 10,000 high-resolution images and
the corresponding ground truth images, of which 80% is used
as the training set and the other 20% is the validation set.
Because the performance and running speed of the CNN is
closely related to its structure, especially the middle layers,
the network parameters including the number of middle lay-
ers, and the filter number and size in each convolution layer
are optimized to achieve a tradeoff between fast imaging
speed and high imaging quality. The optimized CNN has
4 middle layers and each convolution layer has 16 filters with
a size of 3 × 3. The CNN is trained using the Stochastic
Gradient Descent Momentum (SGDM) optimization [25].
The learning rate is initially set to 0.2, and it is decreased
by a factor of 10 for every 10 epochs. Meanwhile, gradient
clipping is enabled using L2-norm of the gradients, in which
the threshold is set to 0.01. The CNN is trained by a computer
(denoted by Comp. 1) with its specifications listed in Table 1.
The loss curves for training the CNN are shown in Fig. 3,
in which both the training loss and the validation loss are well
converged after 100 epochs of training.

TABLE 1. Specifications of the computers and imaging time comparison.

First of all, to show the performance of the CNN-based
FBP method, imaging of a target with 68 point reflectors that
compose a plane profile is demonstrated. Fig. 4(a) shows the
low-resolution basic BP image with 64 × 64 pixels when
the SNR of the radar echo is −15 dB. Based on this low-
resolution image, a pseudo-high-resolution image is derived,
as shown in Fig. 4(b). Using this pseudo-high-resolution
image as the input of the trained CNNs, high-resolution
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FIGURE 3. The loss performance of the CNN during training.

FIGURE 4. (a) The low-resolution basic BP image, (b) the pseudo-
high-resolution image, (c) the CNN-based FBP image, and (d) the
high-resolution BP image when the SNR is −15 dB.

images with 256 × 256 pixels are obtained. Fig. 4(c) is
the image constructed by the CNN-based FBP method. The
resolution of the image in Fig. 4(c) is obviously improved
compared with that of the image in Fig. 4(a), verifying the
capability of the proposed method for constructing high-
resolution images from low-resolution images. As a compari-
son, the high-resolution basic BP image is shown in Fig. 4(d).
It is found that, the CNN-based FBP image in Fig. 4(c)
has a slightly cleaner background, compared with the image
in Fig. 4(d). This result is attributed to the noise-resistant
property of the CNN-based FBP imaging method.

In the previous demonstration, the computations required
for constructing the low-resolution BP image is one-sixteenth
(αβ =16) of that required for generating the high-resolution
basic BP image. Therefore, the CNN-based FBP imaging
method can enhance the imaging speed by a factor close to 16.
To check this property, we compare the time used to generate
the image in Fig. 4(c) with that required to obtain the image
in Fig. 4(d). First, we use the same computer (Comp. 1) as the
one used for training the CNN to measure the imaging time.
As shown in Table 1, the time required for basic BP imaging

and CNN-based FBP imaging is 1.5947 s, and 0.1043 s,
respectively. Thus, the CNN-based FBP reduces the imaging
time by a factor of ∼15.3, which is close to the expectation.
We also test the imaging time using a laptop with a lower
computation speed that is comparative with the commonly
used commercial computers. Specifications of the adopted
laptop are also listed in Table 1 (denoted by Comp. 2). In this
case, the time used for high-resolution basic BP imaging
and CNN-based FBP imaging is 2.4075 s and 0.1814 s,
respectively, with a reduction ratio of∼13.3. Therefore, with
common computer facilities, the CNN-based FBP method
can still significantly enhance the imaging speed.

To quantitatively evaluate the imaging quality, peak signal
to noise ratios (PSNRs) [26] of the high-resolution images
obtained by basic BP method and CNN-based FBP method
are calculated when the radar works in different SNRs. In the
simulation, the target number and distribution are the same as
those used in obtaining Fig. 4. The noise-free high-resolution
BP image, as shown in Fig. 5(a), is used as the reference to
calculate the PSNR:

PSNR = 10 log10

(
1

MSE

)

= 10 log10

 MN
M∑
i

N∑
j

∥∥∥X testi,j − X
ref
i,j

∥∥∥2
2

 (3)

FIGURE 5. (a) The noiseless reference high-resolution BP image, and the
images obtained by (b) high-resolution basic BP imaging, (c) CNN-based
FBP imaging, (d) bicubic interpolation, (e) bilinear interpolation, and
(f) nearest interpolation when the SNR is −35 dB.
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FIGURE 6. PSNR of the high-resolution images obtained by different
methods when the SNR decreases from −5 dB to −35 dB.

in which X test and X ref are the image under test and the
reference image, respectively. Fig. 6 shows the measured
PSNR as the SNR decreases from −5 dB to −35 dB with
a step of 0.5 dB. In Fig. 6, the CNN-based FBP imaging
achieves higher PSNR when the SNR is lower than −18 dB,
while, the basic BP imaging performs better when the SNR is
higher than−18 dB. The results indicate that the CNN-based
FBP imaging has better performance in strong-noise con-
dition, which is attributed to its noise-resistant property.
Besides, as the SNR decreases, the noise-resistant capability
of the CNN-based FBP method is found to become more
prominent. To clearly show this property, the high-resolution
basic BP image and the CNN-based FBP image are shown
in Fig. 5(b) and (c), respectively, when the SNR is −35 dB.
It is obvious that the CNN-based FBP image has better quality
with less noise interference (the PSNR is improved by over
4 dB). However, in low-noise conditions, the basic BP imag-
ing method achieves better quality than the CNN-based FBP
imaging method. This is caused by the fact that the CNN
has a relatively simple structure, which achieves improved
imaging speed at the expense of not ideally approaching
the noiseless ground truth image. If a CNN having more
complex structure is adopted, the imaging quality is expected
to be improved, but the imaging speeding will be lowered
because of the increased computational complexity. To show
this, the PSNRs of high-resolution images constructed by a
pre-trained complex CNN, which has 19 middle layers and
each convolution layer has 64 filters with a size of 3 × 3,
is provided in Fig. 6, as denoted by complex-CNN-based FBP
imaging. As can be seen, the image qualities are improved by
complicating the network. While, the imaging time using the
laptop (comp. 2) for calculation is increased to 1.5 s, which
indicates that the imaging speed is greatly reduced compared
with that by using the optimized CNN-based FBP imaging.
In practical applications, since the radar is usually operated
in low SNR conditions, the proposed method is meaningful
to get high-quality images at a very fast speed. Even in high
SNR conditions, the optimized CNN can still generate images

with acceptable qualities, which can be proved through the
imaging results in Figs. 4(c) and (d).

Since the CNN-based high-resolution image construction
from a low-resolution BP image has the same function as
interpolation-based image construction, it is necessary to
compare the qualities of the CNN-based FBP image and
the images generated by traditional interpolation techniques.
To do this, the low-resolution BP image with 64× 64 pixels is
interpolated to high-resolution images with 256× 256 pixels
using nearest interpolation, bilinear interpolation, and bicu-
bic interpolation, respectively. The PSNRs of the obtained
images under different SNRs are also plotted in Fig. 6. When
the SNR is higher than −25 dB, the image obtained by
bicubic interpolation has a higher PSNR than those gener-
ated by the other two interpolation techniques. When the
SNR is lower than −25 dB, the PSNRs are significantly
reduced due to serious noise effect, and the three interpo-
lation methods have similar performance. It is also obvious
that, the CNN-based FBP imaging method performs better
than all the interpolation-basedmethods, especially in strong-
noise conditions, i.e., the advantage of the CNN-based FBP
method is more obvious when the SNR is lower than−15 dB.
Figs. 5(d), (e) and (f) show the high-resolution images
obtained by the three interpolation techniques when the SNR
is −35 dB. Compared with these images, the CNN-based
FBP image has better quality (the PSNR is higher by about
5 dB), in which the target is clear and the background suffers
from less noise. The result can also verify the noise-resistant
capability of the CNN-based FBP imaging method.

IV. DISCUSSION
Traditional FBP imaging algorithms adopt sparse sampling
in along-track direction, which mainly reduces the imag-
ing complexity in azimuth direction. While, the proposed
CNN-based FBP method reduces the imaging complexity
in both range and azimuth directions. Therefore, it is capa-
ble to achieve a faster imaging speed than traditional FBP
methods. To check this property, we use the FBP algorithm
demonstrated in [12] to perform imaging of the same target
as used in Fig. 4. When the total synthetic aperture is divided
into ten sub-apertures, the FBP imaging using comp. 2 takes
1.5947 s, indicating its imaging speeding is much slower
than the CNN-based FBP imaging. In addition to the advan-
tage on imaging speed, the noise-resistant capability of the
CNN-based FBP imaging method makes it more advanta-
geous over traditional FBP methods.

In our investigation, the CNN is trained using numerically
generated input and ground truth images, in which a simple
AWGN model is adopted to get the radar images defected
by noise. In practical applications, the radar images may be
deteriorated by other undesired interference such as spurs.
Thus, a comprehensive model considering these defects is
preferred to generate images that are more close to real radar
images. This is helpful to achieve a good performance for the
trained CNN to be used in practical radar imaging scenarios.
On the other hand, the CNN in the proposed method can also
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be trained using real radar images. Considering that noiseless
radar images are hard to obtain in practical applications, radar
images collected in low-noise conditions can be used as the
ground truth images.

V. CONCLUSION
We have proposed and demonstrated a CNN-based FBP
imaging method aiming to increase the imaging speed
and get high-quality images with suppressed noise inter-
ference. This method constructs high-resolution images
from low-resolution BP images using a pre-trained CNN.
Performance of the proposed method is investigated through
numerical simulations with the results confirming its feasibil-
ity and advantage. We believe this CNN-based FBP imaging
is a promising technique to meet the requirements where fast
and high-quality radar imaging is needed.
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