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Abstract— Measurement of optical transfer delay (OTD) is
crucial to applications such as fiber-distributed multiantenna
systems, fiber-optic sensors, and high-capacity optical fiber com-
munications. However, present OTD measurement techniques
are inadequate for the demands of high accuracy, high speed,
and large measurement range, simultaneously. Here, we pro-
pose a novel method based on nonlinear frequency sweeping
and phase derived ranging to achieve all the above-mentioned
performance. A continuous-wave light modulated by a microwave
signal propagates in a device under test. Then, the OTD is
mapped into the phase variation of the microwave signal by
photodetection. A microwave phase discriminator is used to
extract the phase variation from the microwave signal, while
the nonlinear frequency sweeping and a novel phase unwrap-
ping algorithm are proposed to resolve 2π phase ambiguity
caused by phase detection. Frequencies of the microwave swept
signals are set at four selected points in a range of 10 MHz,
which ensures high speed and large measurement range. Our
experiment results verify an accuracy of ±0.05 ps in measuring
an ultrahigh-accuracy optical delay line. In addition, long fiber
is also tested, which proves that a measurement range of at
least 37 km (theoretically 100 km) can be achieved. Moreover,
the measurement speed reaches milliseconds per measurement.

Index Terms— Nonlinear frequency sweeping, optical transfer
delay (OTD) measurement, phase derived ranging.

I. INTRODUCTION

ACCURATE optical transfer delay (OTD) measurement
is essential to applications in optical device fabrication,

fiber-optic sensors, fiber-distributed multiantenna systems, and
high-capacity optical fiber communications [1]–[4]. In the past
decades, a variety of OTD measurement technologies have
been proposed [5]–[13], among which the optical time domain
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reflectometry (OTDR) [5], [6] and optical frequency domain
reflectometry (OFDR) [7], [8] are the two most widely used
methods. The resolution of the OTDR is about ns, which is
limited by the pulsewidth and the sampling rate. In addition,
as the light pulse will be broadened after transmission in
a long optical device due to the dispersion, the OTDR has
a low accuracy in long fiber measurement (typically 10 ns
at 20 km). The OFDR converts the time delay into the
beat frequency between a probe light and a reference light.
Benefitting from the wide frequency scanning range of the
tunable laser, the OFDR has a relatively high accuracy on
the short-distance measurement. However, as the fiber length
increases, the accuracy of the OFDR would be significantly
degraded (typically 5 ps at 2 km) due to the relatively large
linewidth of the tunable laser. Recently, some OTD measure-
ment techniques in the frequency domain have been proposed
to meet requirements of large measurement range and high
accuracy, such as mode-locking method [11], free-running-
laser-configuration-based approach [12], and phase-locked-
loop-based technique [13]. In general, these frequency-based
methods have a good performance in the large OTD (e.g.,
long fiber) measurement (typically 0.2 ps at 50 km).
However, almost all such methods are time-consuming (typ-
ically several minutes per measurement), inconvenient, and
environmentally sensitive. Phase shift methods for dispersion
measurement [14], [15] can also be used to measure relative
delay at different wavelengths, which is achieved by the
wavelength-dependent phase shift of a fixed-frequency mod-
ulated light beam when propagated through a fiber. However,
when measuring the absolute OTD at a fixed wavelength,
the maximum unambiguous measurable delay is determined
by the period of the RF signal. To overcome this problem,
we proposed an absolute OTD measurement method [10]
by linearly sweeping the frequency of the RF signal, which
achieves an accuracy of ±0.1 ps and a measurement speed of
several seconds at 20 km.

In this article, an OTD measurement approach based on
nonlinear frequency sweeping and phase derived ranging is
proposed. Different from [14], the proposed method scans
the frequency of the RF signal instead of the wavelength
of the optical carrier. Compared with [10], a method for
selection of the optimal modulation frequencies and a phase
unwrapping algorithm to calculate the 2π phase ambiguity
are proposed to reduce the redundant frequencies, which dra-
matically improves the measurement speed. In an experiment,
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Fig. 1. Proposed OTD measurement approach. LD: laser diode; MZM:
Mach–Zehnder modulator; PD: photodetector; MS: microwave source; MPD:
microwave phase discriminator; DUT: device under test; and MBC: modulator
bias controller.

benefitting from the nonlinear four-point sweep, the proposed
method obtains a speed of milliseconds per measurement.
The accuracy reaches ±0.05 ps, while the measurement range
is more than 37 km. Compared with [10], the proposed
method features higher accuracy, higher speed, and larger
measurement range.

II. PRINCIPLE

The schematic of the proposed OTD measurement approach
is shown in Fig. 1. A laser diode generates an optical carrier
with an angular frequency of ωc. Then, it is sent to a
Mach–Zehnder modulator (MZM) biased at the quadrature
point and modulated by a microwave signal with an angular
frequency of ωm . Mathematically, the electric field at the
output of the MZM can be written as

E p(t) = Eo(1 + A cos ωmt) exp j(ωct) (1)

where Eo is the amplitude and A is the modulation index. After
traveling through the DUT, the optical field can be expressed
as

Ed(t) = αEo

(
1 + A cos ωm(t−τ )e− j 1

2 β2 Lω2
m

)
× exp j(ωc(t − τ )) (2)

where α, L, τ , and β2 are the loss, length, transfer delay, and
group velocity of the DUT, respectively. A photodetector with
a responsivity of η is used to convert the optical signal into
an electrical signal. The photocurrent at the frequency of ωm

can be given by

i(t) = 2ηAα2 E2
o cos

(
1

2
β2 Lω2

m

)
cos ωm(t − τ ). (3)

According to (3), the phase variation of the microwave signal
is

ϕ(ωm) = −ωmτ. (4)

A microwave phase discriminator (MPD) is used to extract the
phase variation. Because the output value of MPD is located
in [-π , π], the phase change is rewritten as

ϕ(ωm) = 2π N(ωm) + θ(ωm) (5)

where N(ωm ) is an unknown integer and θ(ωm) is the out-
put value of MPD. To calculate the 2π phase ambiguity,

we nonlinearly sweep the microwave frequency and measure
the phase shift. The least frequency points can be achieved if

ω1 =
(

1 − 
θ

2π

)

θ


τ

ωi = ω1 + π

τmax
·
(

2π


θ

)i−2

, i = 2, 3, . . . , M − 1

ωM = 
θ


τ
(6)

where 
θ is the accuracy of the MPD, 
τ is the required
measurement accuracy, τmax is the maximum measurable
delay, and M is the number of frequency points. Because
ωM−1 < ωM , the number of points is

M = ceil
[
log2π/
θ((ωM − ω1)τmax/π)

] + 2 (7)

where ceil[.] denotes round toward plus infinity. From (7),
it can be seen that the number of swept points increases in
logarithm. In contrast, when using linear frequency sweeping,
the number of points is [(ωM -ω1)τmax/π], which is linear
growth. Therefore, the proposed method can greatly reduce
the number of redundant frequencies when measuring large
OTD, enabling fast OTD measurement.

A novel phase unwrapping algorithm is proposed to calcu-
late the 2π phase ambiguity. The phase shift θ2 is corrected
by subtracting 2π when the absolute phase difference between
θ1 and θ2 is greater than or equal to π radians. In addition,
the residual phase shift θi are corrected by

φi = 2π · round

[
(ωi − ω2)(φi−1 − θ1)

2π(ωi−1 − ω1)
+ θ1 − θi

2π

]
+ θi (8)

where round[.] denotes round toward nearest integer. Finally,
the 2π phase ambiguity of ωM can be calculated by

NM = round

[
(ωM − ω2 + ω1)(φM − θ1)

2π(ωM − ω1)
− θM

2π

]
. (9)

According to (4), (5), and (9), τ can be given by

τ = −
(

NM + θM

2π

)
2π

ωM
. (10)

III. EXPERIMENTAL RESULTS AND DISCUSSION

An experiment based on the setup shown in Fig. 1
is performed to verify the proposed OTD measurement
approach. An optical signal from a 1550-nm laser diode
(Newkey Photonics, NLC13) with a linewidth of <100 kHz is
modulated at an MZM (Fujistu, FTM7928FB) by a sinusoidal
signal. The bias point of the modulator is kept at the quadrature
point using an automatic modulator bias controller. After the
DUT, the modulated signal is detected in a photodetector with
a bandwidth of 12 GHz, and the resultant electrical signal
is sent to an MPD with an accuracy of ±0.1◦. In addition,
the temperature of the measurement system is maintained at
25 ◦C using an incubator.

The frequencies of the sweep points are set to f
and f +1 kHz and f +1 MHz and f +10 MHz, where
f = 5.59 GHz after considering redundancy. Theoretically,
an accuracy of ±0.0496 ps can be obtained with the highest
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Fig. 2. Evaluation of system stability. (a) System delay fluctuations.
(b) Probability distribution of the system delay. B is the fitting line of A.

Fig. 3. Evaluation of measurement accuracy. (a) Measured MDL delay when
it changes with a step of 1 ps. (b) Measurement deviation.

frequency of 5.6 GHz. The frequency difference of 1 kHz
between the first two frequencies determines the maximum
measurement range, which ensures a measurement range
of 500 μs = π/(2π · 1 kHz) due to the phase unwrapping
algorithm. In addition, the microwave synthesizer has a fre-
quency hopping speed of submilliseconds per point, so a mea-
surement speed in milliseconds can be achieved, which ensures
immunity to environmental disturbances. Therefore, compared
with [10], the measurement accuracy can be improved when
measuring large OTD.

Fig. 2 shows the measured system delay within 1 h. As can
be seen, the fluctuation is below ±0.04 ps, and the standard
deviation is 0.009 ps. To further verify the measurement
accuracy, a motorized variable optical delay line (MDL,
General Photonics MDL-002) serves as the ultrahigh accuracy
reference. Its resolution is <1 fs, and the accuracy is ±0.01 ps.
When the MDL is set at zero point, the MPD measurement
results at four frequency points are −143.1975◦, −143.2017◦,
−147.0248◦, and 178.5359◦, respectively. After phase unwrap-
ping, the corrected phase shifts are −143.1975◦, −143.2017◦,
−147.0248◦, and −181.4641◦, respectively. Then, the phase
ambiguity of 5.6 GHz can be calculated as −60. Accord-
ing to (10), we can achieve an OTD of 10.625726 ns =
−(−60+178.5359◦/360◦)/5.6 GHz, which is mainly intro-
duced by MDL pigtails. Fig. 3 demonstrates the measured
MDL delay variations when it changes with a step of 1 ps.
It is obvious that the measurement delay and the set delay
agree well. The deviation between them is below ±0.04 ps.
Therefore, the targeted accuracy of ±0.05 ps can be obtained.

According to (10), the measurement accuracy is propor-
tional to the highest frequency of the microwave signal.
However, the higher-order dispersion cannot be ignored as
the frequency increases. Since the phase shift caused by the
even-order derivatives of β only affects the magnitude of the
photocurrent, they will not degrade the measurement accuracy.

Fig. 4. Measurement error induced by the high-order dispersion in fibers.

Fig. 5. Evaluation of measurement range and speed. Measured OTD of a
37-km fiber with a measurement interval of (a) 10 s and (b) 48 ms.

If the third-order derivative of β is considered, the phase
variation should be rewritten as

ϕ(ωm) = −ωmτ − 1

6
β3 Lω3

m (11)

where the third-order derivative of β is given by

β3 =
(

λ

2πc

)2(
λ2 S + 2λD

)
(12)

where λ is the wavelength, c is the light speed in vacuum,
D is the dispersion [ps/nm/km], and S is the dispersion slope.
Generally, the SMF-28 fiber has a dispersion of 16.5 ps/nm/km
and a dispersion slope of 0.05 ps/nm2/km. Then, the measure-
ment error caused by β3 can be simulated. As can be seen
from Fig. 4, the measurement error will be increased with
the frequency and the fiber length due to the higher-order
dispersion, which limits the highest achievable measurement
accuracy.

To verify the large measurement range and high speed of
the proposed method, we also measured the transfer delay of
a 37-km fiber. Since the delay variation of long fiber in the
natural environment is of great interest in many applications,
the fiber is placed outdoors and observed for more than 24 h.
The results are shown in Fig. 5(a). As the fiber is moved
from indoor to outdoor, the fiber delay changes fast during
the first 3 h due to the large temperature variation. Then,
the measured OTD varies linearly with the temperature. The
temperature coefficient of delay is about 7.1 ppm/◦C, very
close to 7 ppm/◦C in the datasheet. Fig. 5(b) shows the
continuous measurement results within 1.92 s. The refresh rate
reaches 48 ms each time, which is mainly limited by data
transmission and processing.

IV. CONCLUSION

A nonlinear frequency sweeping and phase derived
ranging based OTD measurement method with high accuracy,
fast speed, large measurement range, and simple structure has
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been proposed and demonstrated. In the experiment, an accu-
racy of ±0.05 ps was obtained. The OTD of a 37-km fiber was
also measured, which verified the large measurement range
and high speed of the proposed method. Moreover, benefitting
from the nonlinear frequency sweeping, the measurement
speed reached milliseconds.
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